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Abstract

Streaming change detection schemes are of great inter-
est in the context of data warehouses, data cleaning systems,
network traffic anomaly detection and other measurement
scenarios. The goal of change detection systems is to deter-
mine whether fundamental characteristics of a data stream
have changed, either temporally (with respect to prior data)
or spatially (with respect to other streams).

We present an application of an information-theoretic
change detection scheme to determining stationarity in In-
ternet measurements. Our experiments indicate that this
generic scheme, despite being oblivious to the nature of
the data, matches a more domain specific approach for this
problem, and requires no domain knowledge to work effec-
tively.

1. Introduction

Change detection schemes, whether they be intrusion de-
tection mechanisms, network traffic alarm systems, or data
cleaning schemes, have been studied extensively in specific
domains. In recent years, there has been some interest in
the databases and data mining community in developing
generic change detection schemes that take as input a stream
of records of varying types (categorical, numerical, multidi-
mensional), and usenon-parametricmethods to determine
whether intrinsic qualities of the data have changed.

The focus on generalness is important so that the meth-
ods developed can be applied to a wide range of applica-
tions. Generalness is also crucial in situations where the
data stream cannot be modeled effectively using standard
models (i.e parametrically). A simple example would be
the records that arrive at a data warehouse for storage; of-
ten, there are human and machine-induced discrepancies in
these records, and we would like to determine such discrep-
ancies in the absence of detailed models describing the data.

In recent work [3], aninformation-theoretic approachto
change detection has been developed. The authors define a
notion ofdistancebetween data stream windows based on
computing theKullback-Lieblerdistance (KL-distance) be-
tween appropriately defined probability distributions, and

use the statistical method ofbootstrappingto provide a for-
mal probabilistic guarantee for change detection. This ap-
proach is non-parametric; it requiresnoassumptions on the
data streams. It has also been shown to be effective for a va-
riety of multidimensional data sets with different notions of
change.

This change detection scheme consists of two black
boxes; one which computes a distance between two win-
dows, and a second which for statistical significance. These
black boxes are independent of each other. Any distance
function where a zero implies identity and larger values im-
ply a greater dissimilarity can be used as the first black
box without affecting the structure of the method; this is
the main advantage of this approach. In addition, because
of the modularity of our scheme, domain-specific informa-
tion could be used to supplement the KL-distance and cre-
ate a modified distance function that would improve the
method. Thus, this approach provides a generic framework
for change detection that can be tailored quite easily for spe-
cific domains.

There are many change detection schemes in the litera-
ture, and a full discussion is beyond the scope of this pa-
per. Our focus here is not on the problem of change detec-
tion per se, but on its application to the problem of station-
arity.

2. Applying change detection to an Internet
measurement application

Internet properties are notoriously hard to characterize
given the large number of entities, the inherent variability
of the measures, and the periodic events that cause instabil-
ity. We decided to take an existing data set that had been
gathered for the triggered measurement project ATMEN [7]
and explore the applicability of our change detection proce-
dure for determining stationarity.

The measurement application we chose is a fairly generic
one. PlanetLab [1] is rapidly gaining in popularity as a
measurement platform on the Internet. Numerous research
projects are carried out using subsets of the roughly 350
nodes of PlanetLab. The studies involve series of measure-
ments on different layers of the protocol stack for vari-
ous applications. Such studies often require repeated probes



from multiple nodes over a period of time that can range
from a few hours to a few weeks. The large number of
servers involved in typical applications require that exten-
sive measurements be carried out. The measurements in-
volve numerous protocols (DNS, TCP, BGP, HTTPetc.) and
multiple entities (routers, hosts, DNS and Web serversetc.),
often for the same application.

A natural question to ask is “can we determine a suit-
able number of measurements to be obtained?”. The an-
swer depends very much on the particular application, the
variability involved in the entities measured, and theover-
all issue of stationarity along numerous axes: temporal, spa-
tial, and application-level. For the purpose of this paper, we
use the term “stationarity” to refer to properties of a data
stream that are (roughly) invariant over time or space. If the
characteristics of a certain measurement are relatively sta-
ble over time (for example), we can reduce the number of
samples required to characterize this measurement. In gen-
eral, exploiting various axes of stationarity will allow us to
reduce the number of measurements made while still being
able to detect most changes that occur. However, this re-
quires the characterization of the stationarity exhibited by
various measurement parameters. Here, we hope to exploit
the K-L technique to answer the temporal aspect of station-
arity of download time and its components. Our primary
goal in this paper is to see how easy it is to apply the K-
L technique as a generic black box and validate its degree
of effectiveness. Overall, our goal is to answer the follow-
ing question: How large is thesemantic gapbetween this
generic change detection scheme and more domain specific
methods in the context of stationarity?

3. Change detection

We briefly describe the KL-distance change detection
procedure. It takes as input a stream of data records, where
records may have both categorical and numerical attributes.
Two windows, each of sizeW , are maintained over the in-
put stream. Change is then expressed as a distance com-
puted between these two windows. Intuitively, the two win-
dows represent a reference pattern and a test pattern; the
distance function determines whether the test pattern dif-
fers significantly from the reference pattern.

The power and generality of this approach comes from
the choice of distance function. Each window of data is
viewed as representing samples from an (unknown) prob-
ability distribution, and we then define a distance function
in terms of these probability distributions. The function we
use is called theKullback-Lieblerdistance, also known as
therelative entropy[2].

Formally, if we are given two probability distributions
p, q over a set of atomsX (thus, 0 < p(x) ≤ 1, 0 <
q(x) ≤ 1, x ∈ X, and

∑
x∈X p(x) =

∑
x∈X q(x) = 1),

the Kullback-Liebler (KL) distance fromp to q is defined
as

D(p‖q) =
∑

x∈X

p(x) log
p(x)
q(x)

The KL-distance is widely used in information theory. In
our context, mathematical statistics and learning theory pro-
vides a more relevant interpretation of the KL-distance as
a natural distance function between probability functions,
closely analogous to the sum-of-squares distance between
two vectors in a Euclidean space. Note that this measure is
asymmetric;D(p‖q) 6= D(q‖p) in general. This is not a se-
rious problem in practice for this particular application.

Given a window, we construct an empirical probability
distribution from it by binning the data items. For categori-
cal attributes, the bins are the set of values the attribute can
take; for multidimensional numerical attributes, we build a
quad-treein the appropriate dimension and use the leaves
of the quad tree as bins. Note that the quad tree is actually
built on the union of the two windows so that they share the
same set of bins (i.e., atomsx ∈ X).

Once this is done, the number of data items in each bin
can be normalized to compute an empirical probability dis-
tribution, and then the KL-distance can be computed using
the formula above (with a correction for the case when a bin
count is zero). Updating the distance calculation as the win-
dows slide across the data stream is easy; quad trees can be
updated in time proportional to their depth, which in prac-
tice is usually logarithmic in the size of the window (the
worst case update time is linear in the size of the window,
but is rarely encountered in practice).

3.1. Bootstrapping

Once we compute the KL-distancêd between two win-
dows, we have to evaluate this value for statistical signifi-
cance. To do this, we use the framework ofhypothesis test-
ing andbootstrap sampling. The null hypothesis is that the
two windows arise from the same underlying distribution
and thus no change has occurred. A traditional statistical
approach would model the distribution of values of the test
statistic (in this case the KL-distance) and determine the
probability thatd̂ could have been measured under the null
hypothesis. This is very hard in general, and can only be
done for structured test statistics like the mean and standard
deviation.

We will use a more general data-driven approach called
bootstrapping. The idea of bootstrapping is to construct em-
pirically a distribution of the test statistic that reflects the
null hypothesis, and use this to determine the significance



of a measurement1. Under the null hypothesis, the two win-
dows arise from the same distribution, and thus their mix-
ture also arises from the same distribution. Thus, our boot-
strapping procedure is as follows. We combine the data
from the two windows and construct an empirical distribu-
tion as described above. We then sample2W times (with
replacement) from this distribution, and declare the firstW
items as the first window and the secondW items as the
second window. We then compute the KL-distance between
these two windows, giving us an estimated1. We repeat this
procedureB times, obtaining estimatesd1, d2, . . . dB .

Fixing a significance thresholdα = 99%, we then
check if the original estimated distancêd lies outside the
α-percentile of the sorted set ofdis (i.e., it is in the top1%
of samples). If so, we declare a change to have occurred, and
reset our test window to start at the data item just after the
window where this happened. The choice ofα represents a
tradeoff; the smaller the value ofα, the fewer the number
of false negatives, but the larger the number of false posi-
tives. Experiments on different kinds of data sources indi-
cate that this choice of value represents a reasonable trade-
off between the two kinds of error; true changes are not
missed, while keeping the false positive rate as low as pos-
sible.

We start the process with the first window at the begin-
ning of the stream and the second window immediately fol-
lowing it. The above procedure describes what happens if a
change is detected. If a change isnot detected, we slide the
second window one time step forward, keeping the first one
fixed. The rationale for doing this, first suggested in [6], is
to prevent small changes from accumulating to cause a big
change without our being able to detect it.

4. A Specific Application of Measurement
Reuse

Internet events such as worms, virus, and flash crowds
mandate constant measurement by network operators. A
distributed set of intercommunicating measurement enti-
ties reacting quickly to events and aiding correlation of
application-specific measurements would be useful. The
triggered network measurement infrastructure ATMEN al-
lows for measurements to be turned on and off for spe-
cific durations of time on a subset of co-operating set of
measurement sites based on the occurrence of one or more
events. It was learned in constructing ATMEN that the cost
of carrying out measurements repeatedly from many prob-
ing sites could be reduced by reusing measurements pru-
dently. Most measured parameters exhibit varying degrees
of stationarity across time and space. The value of a mea-

1 A detailed description of bootstrapping is beyond the scope of this pa-
per; we refer the reader to [4] for more details.

surement often remains stable over short intervals of time.
Commonalities across clusters of measurement sites may
allow the measurements to be reused across space. Appli-
cations that share common primitive measurement compo-
nents can allow other applications to reuse them. For ex-
ample, many applications on the Internet interested in per-
formance may measure a DNS component which may be
reusable across applications if there is no significant varia-
tion in the timescale of interest.

We studied reuse potential of measurements in a real-
world application – performance-based ranking – by rank-
ing a set of Web sites according to their download time.
Download time can be decomposed into individual compo-
nents of DNS lookup, TCP connection setup, and HTTP
transfer time. Such a component-based measurement is
widely applicable for a variety of Internet measurements
(such as P2P applications). We measure these parameters
in this application. Irrespective of the methodology used to
analyze temporal and spatial stationarity of download time
and its components, making inferences that hold for down-
loads from any arbitrary Web site on any arbitrary client is
hard. We would need data for measurements made from ev-
ery client in the Internet to all Web sites at every instant in
time over an extended period of time. As this is impracti-
cal, we gathered an approximation of such an ideal dataset.

We designed the methodology to gather measurements
keeping in mind that the data we collect should be repre-
sentative of the ideal dataset. Any analysis done over a non-
representative dataset might yield results that were applica-
ble only for the specific set of client sites and Web sites we
chose and the inferences made would not extend to mea-
surements of download time and its components made to
other Web sites from an arbitrary client site. Thus, we chose
a set of Web sites representative of most Web traffic and per-
formed downloads from a geographically distributed set of
client sites.

We chose the 88 most popular Web sites and performed
download time measurements by obtainingindex.htmlfrom
them. These 88 Web sites were selected by merging several
popular Web site rankings – Netcraft [10], Mediametrix [8],
and Fortune 500 [5]. To obtain good geographic coverage
of client sites, we issued download requests from a set of 66
PlanetLab nodes [1] distributed across North America, Eu-
rope and Asia spanning academic institutions, research lab-
oratories and commercial sites.

There are no dialup nodes in PlanetLab and among the
two DSL nodes that exist, one of them was nonfunctional
during the duration of our experiment. We did make mea-
surements from the other DSL node. However, the data col-
lected from this node showed different trends as compared
to the 66 mentioned above and hence was not used as part
of this study. We reiterate that no particular choice of client
and server sites can be considered to be completely repre-



sentative. Our choice of using 66 geographically distributed
PlanetLab nodes and the 88 most popular Web sites is a
plausible choice given the resources at hand.

Each client site performed a download once every 5 sec-
onds, implying thatindex.htmlfrom each of the 88 Web-
sites was downloaded approximately once every 7.5 min-
utes on each site. To gather measurements over a sufficiently
long period of time, we performed this periodic download
on each of the 66 client sites for 17 days in July 2004. We
used a slightly modified version ofhttperf[9] for the down-
loads, logging the DNS lookup, TCP connection setup, and
HTTP transfer times.

5. Our experimental setup

We next present the results of applying our change detec-
tion procedure on this data to analyze the temporal station-
arity of download time and its components. As IP addresses
of PlanetLab nodes and Web site names hold no signifi-
cance for the change detection algorithm, we enumerated
the 66 PlanetLab nodes and 88 Web sites in a random or-
der and mapped them to the sets[0..65] and[0..87], respec-
tively. For each pair of (PlanetLab node,web site), the set
of measurement values were normalized by dividing by the
maximum value of the particular type of measurement. As
outlined in the previous section, our change detection pro-
cedure operates on a stream of records. Hence, the input
to the change detection algorithm was a sequence of nor-
malized values for each(i, j) tuple, wherei ∈ [0, 65] and
j ∈ [0, 87], with one sequence each for DNS lookup time,
TCP connection setup time, HTTP transfer time and total
download time.

For each tuple(i, j), we recorded the number of changes
detected by the change detection scheme. We then com-
puted the standard deviation of these changes for a fixed
Planetlab nodei, over alll websitesj. Each of these compu-
tations was performed for all the four measurement types,
over varying window sizes.

5.1. Domain-specific validation

In order to validate our change detection scheme, we
used a common methodology for determining variability
based on ratios of measurements recorded at different time
intervals. For each(i, j) tuple, i ∈ [0, 65], j ∈ [0, 87], we
computed the ratio of successive measurements in the nor-
malized sequence. We then retained the ratio at theXth

percentile of these measurements, calling this theintrinsic
variability thresholdfor a givenX and tuple(i, j). Next,
for each(i, j) pair, and for differing values ofW , we col-
lected the ratios between elementsW measurements apart
in the normalized sequence of measurements. Once again,
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Figure 1. CDF of standard deviation across win-
dow sizes of average number of changes detected
in TCP connection setup time for each PlanetLab
node

we computed theXth percentile value, calling this thevari-
ability thresholdfor a fixedW andX.

A pair (i, j) was deemed to havelow-variability for a
given W if the variability threshold was within5% of the
intrinsic variability threshold for this pair. Thus, for each
PlanetLab nodei, we obtained a count of the number of
low-variability pairs(i, j) for a fixedW andX. Allowing
the window sizeW to vary from 15 minutes (equivalent to
2 units) to 4 days (equivalent to 768 units), and thresholdX
to vary between70% and95%, we obtain a variability score
for each PlanetLab nodei, computed as the standard devia-
tion of the counts over all window sizes and thresholds.

The intuition behind this calculation is that for a rela-
tively stable node, the ratios recorded over different time
windows and different percentiles do not vary significantly,
whereas if a node has erratic behavior, the number of low-
variability pairs will fluctuate over window sizes and thresh-
olds, yielding a high standard deviation.

6. Analysis and Results

We start with an overview of our results. Figure 1 charts
the cumulative distribution of the number of PlanetLab
nodes vs. the standard deviation of the number of changes,
measured across all window sizes with respect to TCP con-
nection setup time. The sharp “knee” in the plot indicates
that a large majority of the nodes have a small standard devi-
ation (below1.0); only a few show large variability in their
behavior.

A similar plot results if we plot the variation in the num-
ber of low-variability nodes (Figure 2). Once again, there is
a sharp “knee” with only a few nodes displaying high vari-
ability.
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timescales and variability thresholds of number
of Web sites which showed low variability in TCP
connection setup time for each PlanetLab node
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Figure 3. Histogram of number of changes de-
tected for two PlanetLab nodes. The x axis mea-
sures the number of changes, and the Y axis
records the number of web site streams to which
these many changes were detected.

What these graphs indicate is that overall, a small frac-
tion of the PlanetLab nodes exhibit high variability in their
measurements, and the rest exhibit fairly stable behavior.
However, does our (generic) change detection scheme de-
tect the same nodes as being highly variable as the more
domain specific ratio method – one that is fairly common in
network measurements ? If we examine the set of high vari-
ability nodes in each case, (i.e the nodes “above the knee”
in each graph) we find a high level of similarity. Specifi-
cally, we ranked the nodes in decreasing order of standard
deviation for both the ratio method and the change detec-

tion method, for the different measurement units, and re-
tained the nodes “above the knee” in each case. Compar-
ing the rankings generated by the two approaches, we found
that there was a high correlation between the two rankings;
when we considered the top 22 ranked nodes for both TCP
connection setup time and HTTP transfer time, there were
16-17 overlaps.

To illustrate the difference in the change histograms, we
plot in Figure 3 the distribution of websites across changes
for two nodes; a low-variability node (the University of
Washington) and a high-variability node (Johns Hopkins
University). These are plotted for a fixed window size of
25, and illustrate the distinct difference in the histograms of
the two cases.

Although the rankings match quite well, there are still
some discrepancies. In Figure 4 we illustrate the discrep-
ancies with two examples; the first being a node that the
change detection scheme deems highly variable, and the
second being a node that the ratio method deems highly
variable. In each figure, we used a representative (node, web
site) pair.

In general, discrepancies occur because the ratio method
assigns a single bit to a stream, declaring it highly variable
or not. The change detection method, on the other hand as-
signs a numerical strength of variability to a stream. Thus,
when aggregating, the schemes may differ slightly when a
few streams skew the outcome. This phenomenon is show in
Figure 4(b); only the displayed stream has high variability,
increasing the change detection. Overall though, the number
of highly varying streams remains small, and thus so does
the estimate provided by the ratio method. In Figure 4(a),
the change detection procedure detects a single change; the
ratio method views this stream as highly variable because
for different window sizes and thresholds, many high ratios
will be recorded.

Finally, we discuss parameter choices. The window size
appears to be the most crucial parameter, as it controls to
an extent the resolution of changes that we discover. A win-
dow size too large, and small changes will be drowned out;
too small, and spurious changes will be detected, or some
changes might even be missed. The window size also con-
trols the measurement rate. A window size that captures all
changes also indicates the number of measurements needed;
the measurements should be sufficient to cover all windows
(once again, a larger “true” window size would imply that
fewer measurements are needed to estimate the variability
of a node). Our change detection scheme has an inherent
false positive rate that is independent of the data, and thus
generates fewer errors with increasing window size.

In Figure 5 we plot the average number of changes for a
given node over different window sizes. We picked three
nodes at random from the high variability set and three
nodes at random from the low variability set. Two obser-
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Figure 5. Distribution across window sizes of average number of changes detected on each PlanetLab node
for (a) DNS lookup time (b) TCP connection setup time (c) HTTP transfer time and (d) total download time

vations emerge from these charts: firstly, that the distinction
between high and low variability is quite stable over win-
dow size and measurement. Secondly, using the low vari-
ability nodes to give a baseline measurement of the false
positive rate, a plausible explanation for the discrepancy
between the two groups is the increased number of true
changes detected for the high variability nodes as the win-
dow size decreases.

7. Discussion

Change detection schemes are legion, and are carefully
tailored to specific contexts and measurements. Our purpose
in this work was to demonstrate how a general approach to
change detection that isoblivious to the nature of the data
being evaluatedcan be used effectively in a specific mea-
surement setting, namely that of determining stationarity of
nodes for the purpose of optimizing measurements.

How well do we do? In comparing our approach to a
domain-sensitive method (the ratio method), we wished to
find the “semantic gap”; the penalty we paid for being
generic rather than specific. By that measure, our scheme
performs very well; we are able to correctly separate high
variability and low variability nodes, and even maintain a
relative ordering comparable to that produced by a more
specific approach. This behavior is consistent for different
kinds of measurements; TCP setup times, DNS times and
HTTP transfer times being the ones we examine here.

What this suggests is that our approach can be employed
fruitfully in a variety of measurement settings, whether the
underlying networks be sensor networks, peer-to-peer net-
works, or IP networks. This approach is not a panacea; do-
main specificity will in general provide more fine tuned
analysis than such a general scheme can provide. However,
the closeness with which our results match a more specific
approach suggest that a hybrid approach that uses our gen-
eral method as a “first-cut” to identify anomalies might be
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Figure 4. Examples of TCP connection setup time
distributions which lead to differences between
the two ranking procedures. (a) Considered to be
highly variable by the ratio method but the change
detection procedure detects just one change (b)
The ratio method ranks the PlanetLab node to
have low variability due to the presence of only
one such highly variable Web site, but a large
number of changes even for just one Web site
drives up the average number of changes, caus-
ing it to be labeled as being highly variable.

effective in evaluating stationarity in measurements across
different domains.

It is worth pointing out that we applied our change de-
tection mechanism on existing data collected for a different
measurement project. The experimental methodology used
for data collection was thus independent of our change de-
tection approach, further eliminating biases in our results.
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