
A Generic Language for Application-Specific Flow
Sampling

Harsha V. Madhyastha
University of Washington

Balachander Krishnamurthy
AT&T Labs–Research

ABSTRACT
Flow records gathered by routers provide valuable coarse-granularity
traffic information for several measurement-related network appli-
cations. However, due to high volumes of traffic, flow records need
to be sampled before they are gathered. Current techniques for pro-
ducing sampled flow records are either focused on selecting flows
from which statistical estimates of traffic volume can be inferred, or
have simplistic models for applications. Such sampled flow records
are not suitable for many applications with more specific needs,
such as ones that make decisions across flows.

As a first step towards tailoring the sampling algorithm to an ap-
plication’s needs, we design a generic language in which any partic-
ular application can express the classes of traffic of its interest. Our
evaluation investigates the expressive power of our language, and
whether flow records have sufficient information to enable sam-
pling of records of relevance to applications. We use templates
written in our custom language to instrument sampling tailored to
three different applications—BLINC, Snort, and Bro. Our study,
based on month-long datasets gathered at two different network lo-
cations, shows that by learning local traffic characteristics we can
sample relevant flow records near-optimally with low false nega-
tives in diverse applications.

Categories and Subject Descriptors
C.2.3 [Communication Networks]: Network Operations — Net-
work monitoring; D.3.3 [Programming Languages]: Language
Classifications — Specialized application languages

General Terms
Algorithms, Experimentation, Languages, Measurement

Keywords
Flow sampling, Application-specific traffic monitoring, Language
design

1. INTRODUCTION
Routers can be configured to output summaries of traffic flows

providing aggregate information about a flow of packets between a
pair of endpoints. Such summaries, commonly referred to as flow
records, consist of information about each flow in the form of du-
ration, number of packets, number of bytes, etc.

Due to increasing traffic volumes on the Internet, routers and
flow collectors are unable to keep up with maintaining flow infor-
mation and exporting records for all traffic. Routers/flow collectors
are now configured to output records for only a sampled subset
of traffic. The sampling can be simply statistical, such as 1-in-n,

for various values of n anywhere from 10 to 500. Or it can be
smart [12]—biased to the percentage of traffic in applications.

Several solutions [15, 19, 12] have been proposed for tuning the
sampling algorithm. However, the focus of sampling has largely
been limited to exporting flow records from which unbiased statis-
tical estimates of traffic volume can be inferred. While these tech-
niques are clearly novel, no single sampling technique will suffice
to meet the needs of various applications. For example, an applica-
tion maybe interested in a specific traffic subset such as DNS.

There has also been work [32] towards tailoring the sampling of
flow records to the needs of specific applications. Systems that en-
able application-specific traffic monitoring [4, 6] are also relevant
in this context. However, all of these solutions have simplistic ap-
plication models; the traffic of interest to an application has to be
specified either as an SQL-like query, or as a conjunction of logical
predicates. Such models do not suffice for more complex applica-
tions that make decisions across flows, such as detecting denial of
service (DoS) attacks in combination with SNMP data [3, 30].

To bridge this disconnect between application requirements and
the sampling algorithm employed in routers, we present a language
for specifying the traffic of interest to applications. Devising and
implementing a new sampling algorithm for every application would
be cumbersome. Instead, it is desirable to have an application-
independent implementation of a sampler that takes a template of
rules as input from any particular application. This template will
express the application’s traffic of interest, and will be used to sam-
ple accordingly. In designing a language for templates, we walk the
tightrope of making the language general-purpose to express the di-
verse needs of applications, and yet keeping it simple enough to be
executed on routers and flow collectors; we trade off completeness
for simplicity. We design a language that can be compiled into
lightweight constructs such as finite state machines, bitvectors, and
hash tables.

The contribution of our work can be seen in light of the spectrum
spanning applications and current solutions for application-specific
traffic monitoring. At one end of this spectrum are applications
themselves, each of which can have an arbitrarily complex flow of
logic. At the other end of the spectrum are existing solutions [32, 4,
6] for application-specific sampling of flow records, which model
applications as simplistically as possible so as to minimize the re-
source utilization in emulating their execution. Our work is at the
middle of this spectrum—we aim to capture most of the applica-
tion’s logic in an application-generic manner, but potentially at the
expense of compromising on resource utilization.

In our quest to build a sampler that has information about appli-
cation needs, we investigate whether flow records contain sufficient
information to enable sampling of records of relevance to applica-
tions.

• We gathered unsampled flow data for a month each at two dif-
ferent network locations, and used three different measurement-
related network applications (Snort [28], Bro [25], and BLINC [17])
as exemplars.

• Our custom template language was expressive enough to char-
acterize the diverse interests of these applications.

• For each application, we sampled flows based on its templates.
We then evaluated the accuracy of sampling by comparing these
sampled flows with the flows chosen by normal execution of
the application. By incorporating local traffic information into
the input templates, we obtain near-optimal sampling in a large
number of cases.

Though we focus on sampling flow records in this paper, our lan-
guage is applicable to generic records.

2. LANGUAGE FOR TAILORED SAMPLING
Flow records obtained using deterministic and random sampling

of packets may prove less useful for applications other than volume
estimation. 1-in-n sampling or smart sampling can generate flow
records that provide good aggregate statistics. However, for an ap-
plication interested in a specific subset of flows, it would be more
beneficial to selectively have more complete information about the
flows of its interest.

Applications have a better idea of traffic of interest than routers
or flow collectors do. Applications have rules to identify traffic of
their interest, e.g., an Intrusion Detection System (IDS) has a set
of rules to identify attack traffic. If routers and flow collectors are
made aware of these rules, they could selectively generate records
only for flows that are of interest to the application using these flow
records.

A key requirement for application-specific sampling is that the
classes of traffic of interest to the application be supplied as input
to the sampling module. These traffic classes need to be specified as
a template comprising simple rules that require the sampler to test
predicates based on the fields present in flow records. The language
in which the template is specified needs to be application-generic
to avoid reimplementing the sampling engine for each application
that can benefit from tailored sampling. Constructing a template
is a one-time task, so the effort spent in writing the template can
be leveraged across all network locations that implement sampling
tailored to the same application.

We design a template language with the goal of enabling network
administrators to characterize the traffic of interest to a wide range
of applications. We have an initial implementation of a sampler
that matches templates in this language with flow records, and we
are currently working on optimizing its resource utilization.

Two stages of sampling occur in the process of generating flow
records. Routers sample the packets they receive in computing
summaries of flows. Flow collectors sample the summaries they
receive from routers before writing them to disk. In our work, we
handle only flow record sampling at the flow collector, and assume
the generation of flow records at the router without any packet sam-
pling. Hence, our template language is to be matched with flow
records, and our sampler that performs this matching runs at the
flow collector. Incorporating packet sampling into our framework
is imminent future work.

2.1 Modeling applications
We model applications as receiving a stream of network data

records as input, ranging from application-level records to flow
records to packet streams. Each application is characterized by two
functions: state (capturing current internal state of the application)

field flow record element (e.g., src addr, dst port)
value a field’s value (e.g., 192.168.10.5, 80)
operator a boolean operator (e.g., =, !=, =∼, ∼=)
predicate a (field, value) comparison

(e.g., src addr = 192.168.10.5, dst port != 80)
clause conjunction of predicates
statement disjunction of clauses
block set/sequence of statements

Table 1: Template language specification terminology

and select (a boolean function that determines records of interest).
Record-triggered applications: First, we consider applications

where select is applied on each new data record received by the ap-
plication. select takes two arguments—the current record, and the
current state returned by state, which is a function of all the records
received by the application prior to the current record. state is first
executed to update the current state, and then select is executed to
determine if the current record is of interest based on the new state.
An example application is identifying out-of-order TCP packets in
a packet stream. state captures the current state of each TCP con-
nection, and select returns true whenever a packet is deemed to be
out-of-order based on the current state.

Time-triggered applications: The second class of applications
is where select is executed only at certain scheduled points in time.
Such applications use all (or a subset of) records that arrive to build
up state via state. At the end of each period, select is executed on
each stored record along with the current state as an argument to
see if it is of interest. An example application is one that parses
a Web server log and identifies all objects fetched by a client that
downloaded more than 1GB from the server in a day, as a way
of identifying an unusual client. Here, state stores the cumulative
number of bytes downloaded by each client since the beginning of
the day. select, executed once a day, returns true for each object
fetched by a client whose cumulative total over the day is greater
than 1GB.

2.2 Language Specification
Our design of the template language (terminology in Table 1) is

based on the above two broad classes of applications. The language
primitives are predicates that test a field present in flow records
against a value using simple boolean operators, such as equals (=),
not equals (!=), belongs to (=∼), and contains (∼=). These primi-
tives can be combined to specify a variety of application character-
istics.

In record-triggered applications, a record is chosen by the select
function based on the current state—we seek to capture the subse-
quence of records in the data stream responsible for this state. To
detect out-of-order TCP packets, the selection of the current packet
only depends on the packets received until now for the same 5-tuple
as the current packet.

To enable sampling of a flow record, the template needs to iden-
tify the format of the record and the relevant prior subsequence of
records. We model the format of a flow record by means of state-
ments that are compositions of predicates in the disjunctive normal
form (DNF), i.e., a disjunction of clauses, each of which is a con-
junction of predicates. For example, the statement

((src addr=192.168.10.5 and dst port=80) or
(src addr=192.168.10.5 and dst port=22))

matches all records for flows from the host 192.168.10.5 to either
port 80 or 22. A sequence of such statements (a block), identi-
fies the current record and the prior subsequence of records in the

flow stream that cause select to return true. The build up of the
current state that triggers select might also depend on a particular
set of records being received prior to the current record, not neces-
sarily in sequence. For example, connection state is characterized
by a subsequence of packets whereas the count of number of bytes
from a host is characterized by a set. Hence, our language models
record-triggered applications by means of two kinds of blocks—
sequential and unordered—which we map to finite-state machines
and bit vectors. A sequential block is matched when all its con-
stituent blocks/statements are matched in order, whereas the con-
stituents of unordered blocks can be matched in any order.

Our language also permits predicates to match fields with vari-
ables, e.g., ((src port=P and dst port=P)) matches all flow records
with same source/destination port without requiring a value, as it
may not be known a priori.

We next consider the class of time-triggered applications. Since
the select function in such applications is invoked only periodically,
the application’s state that triggers the selection of a record cannot
be modeled as either a set or sequence of records. Instead, we have
to model the application’s state. In general, the data structures used
by the application to store its state could be arbitrarily complex.
Our abstraction is a set of hash tables, the schemas for which will
be specified by the template. When the end of a period is triggered,
a boolean if clause on the values stored in these hash tables models
the selection of a record by select.

The template for time-triggered applications is specified by means
of timed blocks: a set of statements each of which is associated
with a hash table. The hash table associated with a statement is
updated whenever a flow record matches the statement. The tuple
of variable assignments in each statement serves as the key for the
hash table associated with the statement, e.g., a hash table associ-
ated with the above statement, that checks for equality of source
and destination ports, would have its key as the value assigned to
the variable P . In each hash table, the sampler maintains two kinds
of aggregate values. First, for each key, it maintains counts of var-
ious properties of flow records that match the statement with that
key, e.g., the number of source addresses, the number of destination
ports, the number of flows. Second, it maintains aggregate values
across keys, e.g., maximum number of flows that matched any sin-
gle key. We choose to store these values in each hash table since
we believe such values are the ones widely used in measurement
applications.

To model the if clause that would be executed at the end of a
period, each statement is associated with an auxiliary statement—a
DNF composition of predicates that test the values in the hash table
associated with the statement. An example of a statement in a timed
block is ((src port=S and dst port=80)) with [[num bytes≥ 109]],
which is matched for all records to port 80 for hosts that exchanged
more than 1GB of traffic with this port. Each timed block consists
of a set of such statements associated with auxiliary statements. At
the end of a period, a block is declared to have been matched if the
auxiliary statements associated with every statement of the block
are satisfied.

We present example templates from the applications we consider
in our study. Figure 1 shows slightly simplified versions of portscan
templates in Bro and BLINC. Bro’s template is based on sequential
and unordered blocks as it is a record-triggered application. Blocks
can be nested arbitrarily, forming a hierarchy of blocks, with all leaf
blocks containing statements. The block at the root of this hierar-
chy is the root block. In this example, Bro first detects candidates
for port scan detection as hosts that contact 3 distinct ports within
the span of 30 seconds. Bro then flags a port scan when an iden-
tified candidate contacts 3 distinct ports on the same destination

match sequential block {
match sequential block {

((src addr=S and dst port=P1 and time=T));
((src addr=S and dst port=P2 and time∼=[T, T+30]));
((src addr=S and dst port=P3 and time∼=[T, T+30]));

}
match unordered block with timeout=900 {

ˆ ((src addr=S and dst port=Q1 and dst addr=D));
ˆ ((src addr=S and dst port=Q2 and dst addr=D));
ˆ ((src addr=S and dst port=Q3 and dst addr=D));

}
}
where (S!=∼[123.45.0.0/16, 68.0.0.0/8]) and (D=∼[68.0.0.0/8])

(a)

match ((proto=6)) timed block [300] [flush 300] {
ˆ ((src addr=S and dst port=P and failed=1));
((src addr=S and dst port=P and failed=0)) with [[num flows ≤ 4]];
((src addr=S and failed=1)) with [[num dst ports ≥ 50]];

}
(b)

Figure 1: Templates for portscan in (a) Bro (b) BLINC

within the next 900 seconds. The specifications of these timeouts
of 30 and 900 seconds is enabled by associating unordered and se-
quential blocks with a timeout value indicating when the sampler
can throw away the state maintained in matching this block. Note
that the application itself will need to be aware of such timeouts
since it too needs to garbage collect its state. When the root block
in a template is matched, all the flow records that matched state-
ments marked with the “ˆ” tag are sampled. The use of variables
S, P1, D, etc. enable this template to detect port scans without
specifying the actual source or destination addresses or the partic-
ular port numbers probed.

BLINC’s template for port scan uses a timed block. The ar-
gument [300] associated with the block indicates the period with
which the auxiliary statements in the block need to be checked.
The [flush 300] argument indicates the period with which the hash
tables associated with each statement need to be cleared. Until the
end of a period, the hash tables associated with each statement in
the block are updated for every record that matches the statement.
At the end of the period, the auxiliary statements associated with
each statement are checked. If all are satisfied then the records
that matched the statements marked with the “ˆ” tag are sampled.
In this template, all records for failed connections (indicated by
the absence of packets with payload in the flow) from a particu-
lar host to a particular destination port are sampled if the number
of successful connections between this (host, port) pair was not
greater than 4, and the host had failed connections to more than 50
ports. The ((proto=6)) statement after the keyword match serves as
a quick check to prune out uninteresting flow records. Beyond these
examples, an unordered block can be associated with a threshold k
for the number of its constituents to be matched, and the state asso-
ciated with a block is discarded if one of its statements associated
with a negation tag ∼ is matched.

3. EVALUATION
We evaluate two aspects of application-specific sampling: Is our

template language expressive enough to characterize popular ap-
plications? And do traffic summaries in flow records have suf-
ficient information to select records of relevance to applications?
The absence of payload-dependent information in flow records will
limit the ability to map application criteria that depend on the con-

(a)

(b)

Figure 2: Sampling probabilities (no. packets in sampled flows
total no. packets

)
obtained on the first half of (a) Corp and (b) Univ with Snort’s
templates as input. Note log-scale on y axis. Inverse of sampling
probability is plotted. Higher is more compact.

tents of packets. We consider two popular classes of applications—
intrusion detection and traffic classification. We examine Snort [28]
and Bro [25] as representative IDSes as they constitute opposite
ends of the IDS spectrum with respect to state maintenance. The
traffic classification application we consider is BLINC [17]. IDS
applications have value primarily at the edge of the network, whereas
traffic classification is relevant both in the core and at the edge.

3.1 Measurement Datasets
We gathered data for a month at a corporate site Corp and a uni-

versity Univ, both with hundreds of users. At both locations, we
examined all traffic traversing a particular router. Corp was gath-
ered at an OC-3 link which saw bidirectional traffic to the site; Univ
is based on traffic from one of the links connected to a router at the
edge of a campus network. We gathered the complete set of flow
records (unsampled), and connected a second machine to a span
port on the router to sniff all traffic going through the link. We
ran Snort and Bro on this sniffed traffic. These results and all flow
records were sent to an analysis machine where we ran BLINC
on the flow records. We then performed sampling on this analysis
machine and compared the sampled records with the packets/flows
chosen by Snort, Bro, and BLINC. The optimal sampling is ob-
tained when precisely those packets/flows of interest to the appli-
cation are sampled, and this is our point of comparison.

3.2 Snort
Snort [28] is an open-source IDS that monitors networks by match-

ing each packet it observes against its set of rules. A Snort rule is
a boolean formula composed of predicates that check for specific
values of various fields present in the IP header, transport header,
and payload of packets. For each Snort rule, the template contains
a single sequential block which comprises a single statement. This
statement is the conjunction of all predicates in the Snort rule ig-
noring ones that test fields absent in flow records, e.g., packet pay-
load. Also, to ensure a flow record that matches this statement is
sampled, the statement is marked with the “ˆ” tag.

Such a construction of the template ensures that whenever a packet
matches a Snort rule, the record for the flow corresponding to this
packet is sampled. To determine the sampling probability, we con-
sider a hypothetical scenario where Snort examines only the pack-
ets in the sampled flows. The effective sampling probability ob-
tained is the ratio of the number of packets in the sampled flows
to the total number of packets in the traffic stream. Figure 2(a)
compares this sampling probability for the 47 distinct Snort rules
seen in either half of Corp, with the optimal sampling probability
obtained by use of an oracle sampler that samples precisely those
packets that trigger Snort alerts. Figure 2(b) does the same for the
69 Snort rules seen in either half of Univ. The curve plots the opti-
mal sampling probability for each Snort rule in the order of increas-
ing number of alerts. The squares plot the inverse of the packet
sampling probability obtained if Snort were to only examine pack-
ets in the sampled flows. First, since our construction of templates
corresponding to Snort rules ensures the absence of false negatives,
the sampling probability yielded is always greater than the opti-
mal sampling probability. Second, there are a few Snort rules for
which optimal sampling is achieved. These cases correspond to
Snort rules that test only fields present in flow records, e.g., a few
rules detect anomalous traffic by only checking for the values of
ICMP code and ICMP type, not the packet payload.

However, there are several rules that test the packet payload, for
which the sampling obtained is significantly below optimal. To
bridge this semantic gap between Snort’s rules and the correspond-
ing templates, we explore whether flows of interest to Snort exhibit
any features not already specified in the Snort rules. The features
learnt are useful and applicable only if valid beyond the learning
phase. Therefore, we learn traffic characteristics from the first half
of the dataset, modify templates based on the learning phase, and
evaluate the resultant sampling on the second half.

To detect additional criteria, which we call filters, corresponding
to each Snort rule, we correlate every alert fired due to a rule with
all the flow records sampled with the equivalent template. The flow
record corresponding to a particular alert is identified as the one
whose sextuple 1 matches that of the packet which generated this
alert and whose duration envelops the time of occurrence of this
alert. Based on this correlation, the set of flow records sampled
for each Snort rule is partitioned into two classes—correct matches
(CM) and false-positives (FP).

We next determine for each Snort rule a filter that distinguishes
the correct matches from the false positives associated with this
rule. A generic system that can be employed for the detection
of such filters is AutoFocus [14]. AutoFocus takes a set of flow
records as input, and determines traffic clusters that account for
large fractions of the traffic. We employ a simpler filter detection
methodology on our datasets.

Our methodology has two steps to infer predicates as part of the
filter—inferring predicates based on the equality operator and those
based on inequalities. In the first step, we consider the following
fields present in netflow records—source address and port, desti-
1Sextuple of a flow comprises its 5-tuple (src addr, src port, dst
addr, dst port, protocol), and type of service.

nation address and port, number of bytes, number of packets, and
flow duration, and a synthesized field—average number of bytes
per packet. For each of these fields, we determine whether there
exists any particular value that distinguishes the correct matches
from the false positives. We determine the value for each field that
exists in at least 90% of the flows in CM. For example, all flows
in CM could have destination port equal to 443, or more than 90%
could have exactly 3 packets. We initialize our filter for each Snort
rule as the conjunction of such (field = value) predicates identified.
Since each of these predicates is valid for at least 90% of the flows
in CM, their conjunction too will be valid for a large fraction of
these flows, though not necessarily for more than 90%.

In the second step, we examine the four fields for which inequal-
ity predicates are applicable: number of bytes and packets, flow
duration, and average number of bytes per packet. We consider
those fields for which no predicate is obtained in the first step. For
each such field, we determine whether there exists any threshold
value that distinguishes the flows in CM from those in FP. We per-
form a binary search over the set of values applicable to each field.
For each value, we determine the fraction of flows in the CM and
FP sets, for which the field is greater/lesser than this value. If there
exists a value for which the fraction in CM is greater than that in
FP by at least 75%, we use that value as a threshold in our filter.
For example, 95% of correctly matched flows could last for more
than 10 seconds with only 10% of false positives lasting as long.
For every field for which such a threshold is identified, a (field ≥
threshold) or (field ≤ threshold) predicate is added to the filter.

Both the thresholds we use, 90% for equality predicates and 75%
for inequality predicates, were chosen based on our datasets. Either
threshold can vary from 100% to 0%. The higher the threshold, the
better the quality of the inferred filter. We slid both thresholds down
from 100% in decrements of 5%, and determined that 90% and
75% where the highest values for these thresholds at which filters
were detected for many rules. Sliding either threshold further down
by another 5−10% provided only marginal utility in detecting more
filters, while reducing the quality of the inferred filters.

Inference of filters based on very few occurrences will, however,
not be statistically sound. Hence, we computed a filter for only
those rules that were fired at least 20 times, the knee in the distri-
bution of the number of times each Snort rule was triggered in the
first halves of Corp and Univ. The set of filters inferred differed
across the two sites, reflective of the local traffic characteristics at
either site. The template for each Snort rule was then modified to
include the conjunction of the predicates it already contained with
the predicates in the filter inferred for this rule.

The asterisks in Figures 2(a) and 2(b) plot the inverses of the
sampling probabilities obtained on flows in the first half of Corp us-
ing the modified templates as input. Compared to our initial results
(the squares in Figures 2(a) and 2(b)), we see significant improve-
ment. Near-optimal sampling is achieved for a large fraction of
Snort rules, and even among those farther away from the optimum,
several attain a sampling probability close to 1-in-100. The rules
for which the sampling probability does not decrease much are pre-
dominantly the ones which were triggered less than 20 times, and
hence, had no filter inferred. Note that with the addition of filters,
the sampling probability can even be lesser than the optimum since
filters are not perfect and can introduce false negatives. However,
we find that 85% of Snort rules in Corp and 91% in Univ see less
than 10% false negatives, with half in either dataset seeing none.

We studied the prevalence over time of our inferred filters, by
using the filter-augmented templates to sample flow records in the
second halves of Corp and Univ. The asterisks in Figures 3(a)
and 3(b) show the inverse of the sampling probabilities obtained.

(a)

(b)

Figure 3: Sampling probabilities obtained on the second half
of (a) Corp and (b) Univ with Snort’s templates as input. Note
log-scale on y axis.

Though the sampling probability is higher than that obtained in the
first half of the dataset for several of the Snort rules, it is still sig-
nificantly better than our initial results (the squares in Figures 3(a)
and 3(b)). In fact, the sampling continues to be near-optimal for
many of the rules. The distribution of false negative ratios has a
longer tail than before, with even an instance of all the alerts being
missed for a particular Snort rule. The large majority (78% in Corp
and 83% in Univ), however, continue to have false negative ratios
of less than 10%. More complex filter detection algorithms such
as AutoFocus may help improve these numbers further. But, our
simpler set of steps for detecting filters seems to work pretty well
on our datasets.

To understand why we were able to detect such effective filters,
we examined by hand the filters derived by our automated method-
ology described above. A classification of the different kinds of
filters we observed is as follows (presented in decreasing order of
the number of Snort rules for which such filters were derived):
Attack Probe Information: Many alerts involve the use of a care-
fully crafted train of packets that exploit a particular bug in some
system. The Snort rules for such attacks contain signatures for the
payload used in these attack probes. Since payload information is
absent in flow records, the templates corresponding to such rules
can lead to the sampling of a large number of false positive flow
records. However, for many such attacks, the number of probes
and the aggregate size of the probes is unique to attack flows, as
compared to legitimate flows served by the targeted system. So,
predicates that test for particular values of the number of bytes, the
number of packets or the average number of bytes per packet are
inferred to reduce the number of false positives.

Alert 1 / (Optimal 1 / (Achieved False Negative
Sampling Prob.) Sampling Prob.) Ratio

AddressScan / PortScan 8358 7980 5.7%

 S
en

si
ti

ve
C

on
ne

ct
io

n First Half (w/o learning)
7.8 · 106 371 0%

(w/ learning) 7.2 · 106 1.6%

Second Half (w/o learning)
9.9 · 106 459 0%

(w/ learning) 1.0 · 107 4.1%

(a)
Alert 1 / (Optimal 1 / (Achieved False Negative

Sampling Prob.) Sampling Prob.) Ratio

AddressScan / PortScan 79485 64282 6.3%

 S
en

si
ti

ve
C

on
ne

ct
io

n First Half (w/o learning)
1.1 · 107 5523 0.04%

(w/ learning) 8.1 · 106 8.9%

Second Half (w/o learning)
6.4 · 106 4700 0.2%

(w/ learning) 4.0 · 106 10.1%

(b)

Table 2: Results of sampling flow records in (a) Corp and (b)
Univ given Bro’s templates as input.

Attack Duration: For several Snort rules, the anomalous flows
they identify last for extremely short periods of time or contain a
small number of packets in comparison with legitimate traffic des-
tined to the service specified in the rule. Predicates that test for
thresholds on the number of packets or on the duration of the flow
can be inferred for such rules.
Absent Service: When the service targeted by a particular attack is
not running locally, all traffic destined to this service is anomalous;
there is no legitimate traffic. The filter inferred for a rule that de-
tects such traffic has a single predicate checking if the destination
port of the flow is equal to the port associated with this service.
However, since all flows to this destination port are anomalous, the
accuracy with which this alert is detected is high even without fil-
tering.
Specific Attacker/Target: In our datasets, attacks corresponding
to some of Snort’s rules were observed to be either mostly launched
from the same source host or largely targeting the same destination
host. The specific attacker or target was recognized in these cases
by inferring predicates that test for values of the source or destina-
tion IP.

To better illustrate the inference of filters, consider the Snort rule
that triggers the ICMP digital island bandwidth query alert. This
rule checks for the presence of a particular string in the payload of
ICMP packets. Since flow records do not have payload informa-
tion, all flows corresponding to ICMP traffic match with the tem-
plate corresponding to this rule. However, in the first half of Corp,
our filter inference procedure detected that all flows corresponding
to packets that triggered this alert had exactly one packet of size
1420 bytes. Use of this filter in sampling the second half of Corp
helped reduce the sampling probability corresponding to this Snort
rule from 1-in-100 to 1-in-5× 106. Such information is not part of
the Snort ruleset and varies across sites. Hence, to obtain more ef-
fective sampling, each site will need to learn these additional filters
to reflect its local traffic characteristics.

3.3 Bro
Bro is another open-source system that monitors traffic at some

central point in the network, and takes policy scripts as input from
network administrators to define anomalous or malicious traffic.
Bro maintains comprehensive state information about each connec-
tion to reduce false-positive alerts of Snort (which inspects each
packet in isolation).

(a)

(b)

Figure 4: Sampling probabilities obtained on (a) Corp and (b)
Univ with BLINC’s templates as input. Note log-scale on y axis.

We observed three different types of Bro alerts in either dataset.
Alerts detected in Bro’s weird.bro policy script are excluded from
our analysis, since these correspond to oddities in traffic, such as
inconsistencies in IP fragments or corrupt TCP options, which are
largely inconsequential. The other two classes of Bro alerts are ad-
dress/port scans, and sensitive connections; detected by the policies
in the scan.bro and hot.bro scripts. We constructed templates cor-
responding to the alerts detected in these scripts. As Bro is stateful,
our templates for Bro are based on sequential and unordered blocks,
(c.f. example template for PortScan in Section 2). The different
statements in the template identify various records that Bro looks
for before flagging some traffic as being abnormal or malicious.
Like Snort, our templates for Bro are built with the assumption that
any predicate that tests fields absent in flow records is true.

Table 2 shows the results of sampling flow records in both Corp
and Univ with Bro’s templates as input. The sampling achieved for
address/port scans is near-optimal, and so we do not consider either
half of the dataset separately. Scanning behavior is largely detected
based on flow-level properties, such as the number of destination
hosts/ports contacted by a host.

On the other hand, the sampling obtained in the case of sensi-
tive connections is significantly below optimal in either half of the
dataset, due to the information loss in flow records as compared to a
packet stream. However, on learning additional filters by a method-
ology similar to that used with Snort, near-optimal sampling is ob-
tained in both halves of either dataset, with minimal false negatives.

3.4 BLINC
BLINC [17] is a system for traffic classification developed re-

cently, that takes a set of flow records as input and determines
the application responsible for each flow without examining packet
payload or knowing port numbers used by various applications. We
drew up templates corresponding to the graphlets used by BLINC
to characterize applications, and used these templates to sample
records in either dataset.

Figure 4 compares the sampling ratio obtained for each applica-
tion identified by BLINC, with the corresponding optimal sampling
ratio. The sampling is near-optimal for 6 of the 8 applications. The
sampling is not as close to optimal for the other 2 applications,
games and address scans, because BLINC employs some optimiza-
tions to save on memory in classifying flows to these applications.
For example, BLINC considers only the first 50 non-payload flows
from a host during an interval to detect an address scan from that
host. Thereafter, it ignores all non-payload flows from that host
during the current interval. Our templates instead consider each
flow for sampling, without mimicing these optimizations. Nonethe-
less, the sampling ratio obtained for these 2 applications as well is
better than 10. Due to the absence of any information loss in con-
structing templates that are equivalent to BLINC’s graphlets, there
is no need to infer filters for better relevance of sampled records.

These results demonstrate the expressive power of our template
language. We were able to tailor the sampling to capture the vari-
ance in requirements across the range of Snort/Bro rulesets, and
BLINC graphlets. Our results also point towards long-term preva-
lence of the local traffic characteristics that are represented by the
filters we inferred for both Snort and Bro alerts. Thus, the lack of
information in flow records can be compensated by having a learn-
ing phase precede the deployment of the sampler into operation.

Our intent in sampling flow records of interest to the above ap-
plications is not to modify them to take sampled records as input.
Nor do we seek to propose intrusion detection to be done just on
the sampled flow records. We believe the hints about traffic charac-
teristics gathered from the sampled records can be used to tailor the
execution of each application. Flow records can be gathered only
after sampling at many network locations today, and such records
are being used to glean information, e.g., about attacks. Our results
show that the sampling can be tailored for such needs while still
tolerating sampling constraints.

3.5 Handling multiple input templates
So far, we have considered the sampling of flow records w.r.t

each input template in isolation. However, in practice, several tem-
plates will be fed in as input simultaneously to the sampling mod-
ule. As a result, even though a sufficiently low sampling proba-
bility is obtained for each input template, the probability of a flow
record being sampled may turn out to be high in aggregate. For
example, in the case of Snort, there will be one input template cor-
responding to each Snort rule. Consequently, for the data shown in
Figure 2(a), even though sampling better than 1-in-100 is obtained
for most rules when sampling using filters, the aggregate sampling
probability is 0.5. Such high sampling probabilities may not be
affordable in high traffic environments where resources are scarce.

To address this problem, some of the flow records will need to be
probabilistically dropped. The flow collector utilizes memory/CPU
to match records with templates, and disk space/bandwidth to write
the sampled records to disk. Dropping records prior to match-
ing them with templates will save on both memory/CPU and disk
space/bandwidth. However, this would adversely impact the match-
ing of records to templates, and the records eventually sampled may
not be of much use to the application. Therefore, we consider prob-
abilistically dropping records after they have been matched with
templates but before writing them to disk.

(a)

(b)

Figure 5: Comparison of optimal sampling probabilities on the
first and second halves of (a) Corp and (b) Univ with Snort’s
templates as input. Note log-scale on y axis.

Our key insight is that some templates are more lax than oth-
ers, and records matching such templates should be dropped with
higher probability. The administrator at the site where the flow
records are being gathered can determine the laxness of each tem-
plate by monitoring the number of records that match the template
during the learning phase. Depending on the resources available, he
can then appropriately associate each template with a probability;
records matching the template will be chosen with this probability
to be written to disk. For example, if 1

10

th of the records are seen
to match a particular template, but the flow collector has sufficient
resources only to perform 1-in-100 sampling, this template will be
associated with a probability of 0.1.

However, every template can be associated with a probability as
above only if the fraction of flow records that match the template
remains consistent over time. To evaluate whether this hypothesis
holds in the context of Snort, we compared the optimal sampling
probability for every Snort rule across either half of both datasets.
Figure 5(a) shows that for most of the Snort rules, the optimal sam-
pling probability remains at the same order of magnitude in either
half of Corp. The same is seen to hold in Univ as well, as shown in
Figure 5(b). Further, in the case of Bro, Table 2 shows that in both
datasets, the optimal probability for sampling flows correspond-
ing to sensitive connections remains within an order of magnitude
across halves. We do not consider the same evaluation for BLINC
since, unlike intrusion detection where the objective is to identify
the subset of traffic that is anomalous, traffic classification attempts
to classify all input traffic.

Note that the dropping of flow records after they have been matched

with templates does affect the conclusions drawn from the sam-
pled flow records. This is inevitable given that resources are lim-
ited. If a template is too lax, it is infeasible to gather all flow
records that match the template. The approach described above
of dropping records based on template-specific probabilities strikes
the right balance in the tradeoff between accuracy and resource
consumption—records corresponding to templates that are lax are
dropped selectively to save on resources without comprising the
accuracy of sampling for other templates.

4. RELATED WORK
Prior work on flow record sampling falls into three categories—

languages for specification of sampling that is more flexible than 1-
in-n, sampling algorithms to be used in routers and flow collectors
for gathering flow records, and algorithms for deriving estimates of
various properties from sampled flow records. A detailed examina-
tion of the literature on passive measurement related sampling can
be found in [7].

The packet sampling working group PSAMP [8] at the IETF has
been working on a protocol specification, as well as sampling and
filtering techniques. Primarily sampling focuses on position of the
packet, content of the packet, and a probabilistic factor. Schemes
for sampling envisioned include a deterministic function that has
triggers that are based on spatial position of packets or time. Al-
though considerable work has occurred in the ambit of PSAMP,
there is no provision for accepting hints from application to tailor
the sampling. Our work is complementary to the PSAMP effort.

Since we investigate viability of application-specific sampling
for two applications, intrusion detection and traffic classification,
we also look at related work in these arenas.

Flexible Sampling: Instead of performing 1-in-n sampling with
the same n for all traffic, Cisco’s Netflow input filters [2] enable
segregation of traffic into classes and specification of varying n
across classes. In addition, Flexible Netflow [1] lets the router
administrator select the set of fields that are kept track of in gen-
erating flow summaries. Compound and stateful signatures in Ju-
niper’s Netscreen-IDP suite [16] are similar in spirit to our tem-
plate language. However, their language specification is not open,
and hence, their extensibility is not apparent, e.g., whether they can
represent the needs of time-triggered applications.

ProgME [32] introduces flowsets, a way to group flows based on
specific application needs. They have a language for composing
predicates that allows for adaptation to traffic changes. If netflow
data is gathered using their proposed techniques (different from
how it is being carried out today) they will be able to provide a
flexible environment for multiple applications. However, the lan-
guage used by ProgME only captures unions, intersections, and
negations of flowsets, but not a sequence of flows as required by
record-triggered applications.

Gigascope [4] is a data stream management system specialized
for network traffic analysis used with high performance packet cap-
ture hardware. Gigascope queries are specified in a SQL-like lan-
guage with some extensions, but with restrictions such as the re-
quirement that aggregate and join operations be run over a fixed
size time window. Aurora [6] is a DBMS that allows data to be
streamed through its collection of a small number of primitive oper-
ations (such as windowed operators, an operator to partition streams
into separate windows, etc.). A variety of query types are supported
and the system has query optimization capabilities. Both Gigas-
cope and Aurora are limited by their SQL-like languages in their
ability to capture application requirements.

Sampling Techniques: Flow Slices [19] permits independent
tuning of packet sampling, flow sampling and flow record report-

ing to control the CPU, memory and bandwidth usage in a router.
Rather than performing packet sampling and flow sampling inde-
pendently, the sample and hold algorithm [15] determines which
flows are large and samples all packets on those. Duffield et al. [11]
solved the problem of sampling a fixed number of records in each
interval while still being able to derive unbiased estimates of vol-
ume. The system described by Keys et al. [18] proposes adapt-
able summaries of traffic with a control on resource usage that is
achieved by graceful degradation of accuracy. Their focus is on
detecting heavy hitters.

The common theme across these various sampling techniques
is their fairly narrow focus of enabling either estimation of traf-
fic volumes or detection of causes of high traffic volumes. Many
large network entities have to monitor the amount of traffic they ex-
change with each other, and sampling gives them a cheaper way to
do this. However, several other applications that use flow records
have recently emerged. Examples include identification of P2P
traffic characteristics [20], and analysis of traffic anomalies [3, 22].
Also, applications that operate on packet streams can benefit from
information in flow records in high traffic volume environments.
For most of these applications, flow records can provide useful in-
formation only if the records for flows of interest to the application
are preferentially sampled.

Algorithms for Deriving Estimates: The problem of deriving
useful estimates from sampled flow records has also been exten-
sively studied. Duffield et al. addressed the problems of estimating
billing information [9] and flow distributions [10] from sampled
flow records. Threshold sampling [12] optimally trades-off the ex-
pected number of flows sampled against the variance of volume es-
timates. The optimal methodology for merging sampled measure-
ments [13] has also been determined. Like sampling techniques,
most of this work is restricted to determining estimates of traffic
volumes.

Intrusion Detection: Flow records have been used previously
for detecting anomalous or malicious traffic. LADS [30] triggers
gathering of flow records based on SNMP data, and then uses these
gathered flow records to detect Distributed Denial of Service (DDoS)
attacks. Flow records in the sFlow format have been used for con-
tinuous network-wide monitoring of network traffic [26]. We inves-
tigate whether we can selectively sample flow records of relevance
to Snort [28] and Bro [25]. First, we determine rules that map these
applications’ interest to flow records. Second, we inspect traffic
at two different locations to identify local filters that help decrease
the sampling probability. Automated filter detection has been em-
ployed previously in [29] and [14].

Recently, there has been research examining the impact of sam-
pling on anomaly detection. First, examination of unsampled flows
against a packet trace captured during a worm outbreak [5] showed
that flow counts were significantly affected due to sampling; if
single packet flows are missed at high sampling rates, anomalies
would not be caught. However, entropy-based summarizations have
the ability to retain information related to worm-like attacks. If in-
formation about the nature of attacks of interest can be supplied
to the sampler, the sampled data stream would naturally be more
suitable for detection. Second, evaluation [23] of four different
sampling techniques against a backbone trace showed expected but
differing bias across the techniques; the authors advocate focusing
on alternate methods that can reduce information loss. We believe
sampling using the language we propose could be one such method.

Traffic classification: Lately there has been considerable inter-
est in automatic traffic classification. Beyond BLINC, there have
been approaches ranging from statistical approaches [27, 24] to
machine learning techniques [31, 33]. BLINC has focused on the

transport layer to help with classification without requiring packet
payload or knowledge of port numbers. Recently there has been
work in separating elephants (persistent flows with large number
of packets) from mice (short lived flows with few packets) using
information theory [21], without relying on prior flow distribution
knowledge and low packet processing overhead.

5. CONCLUSIONS AND FUTURE WORK
We introduced an application-agnostic language that can be used

to tailor the sampling of flow records such that records of rele-
vance to applications are selected. We demonstrated the viability of
our approach by considering three popular applications—BLINC,
Snort, and Bro— as examples. In all three cases, our template lan-
guage was expressive enough for us to characterize the applica-
tion’s traffic of interest. We were able to choose flow records of
relevance to each application by folding in local traffic information
into the corresponding template.

One of the avenues for future work is building an efficient sam-
pler that leverages the expressive power of our template language.
The focus in developing a sampler needs to be on optimizing the
sampler’s resource utilization. Towards this goal, two issues will
need to be addressed. First, the sampler needs to be moved from
the flow collector to the router, which necessitates the incorpora-
tion of packet sampling into our framework. Second, the sampler’s
state when given several templates as input needs to be optimized.

Acknowledgments
Steven Gao, George Lazarou, Chris Olsen, Oliver Spatscheck, and
Gang Yao at AT&T, David Ruddick and David Sinn at the Univer-
sity of Washington helped us with the infrastructure for gathering
data—our thanks to them. We thank Dave Kormann for helpful
discussions in diagnosing the problems in sniffing traffic for an
extended period, Ramana Kompella, Arvind Krishnamurthy, and
Vyas Sekar for comments on earlier drafts of this work, and Glenn
Fowler for help with dss. We thank the anonymous reviewers for
their detailed reviews and the CCR editor for his help during the
review process.

6. REFERENCES
[1] Flexible Netflow. http:

//www.cisco.com/en/US/products/ps6965/
products_ios_protocol_option_home.html.

[2] Netflow input filters. http://www.cisco.com/en/
US/products/sw/iosswrel/ps5207/products_
feature_guide09186a00801d3108.html.

[3] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis
of network traffic anomalies. In IMW, 2002.

[4] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
IMC, 2003.

[5] D. Brauckhoff et al. Impact of traffic sampling on anomaly
detection metrics. In IMC, 2006.

[6] D. Carney et al. Monitoring streams—a new class of data
management applications. In VLDB, 2002.

[7] N. Duffield. Sampling for passive Internet measurement: A
review. Statistical Science, 19(3):472–498, 2004.

[8] N. Duffield. A framework for packet selection and reporting,
2007. IETF draft: psamp-framework-11.

[9] N. Duffield, C. Lund, and M. Thorup. Charging from
sampled network usage. In IMW, 2001.

[10] N. Duffield, C. Lund, and M. Thorup. Estimating flow
distributions from sampled flow statistics. In SIGCOMM,
2003.

[11] N. Duffield, C. Lund, and M. Thorup. Flow sampling under
hard resource constraints. In SIGMETRICS, 2004.

[12] N. Duffield, C. Lund, and M. Thorup. Learn more, sample
less: Control of volume and variance in network
measurement. IEEE Transactions on Information Theory,
51:1756–1775, 2005.

[13] N. Duffield, C. Lund, and M. Thorup. Optimal combination
of sampled network measurements. In IMC, 2005.

[14] C. Estan, S. Savage, and G. Varghese. Automatically
inferring patterns of resource consumption in network traffic.
In SIGCOMM, 2003.

[15] C. Estan and G. Varghese. New directions in traffic
measurement and accounting: Focusing on the elephants,
ignoring the mice. ACM TOCS, 2003.

[16] Juniper Networks. Using compound signatures to protect
against complex attacks, 2004.

[17] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel traffic classification in the dark. In SIGCOMM,
2005.

[18] K. Keys, D. Moore, and C. Estan. A robust system for
accurate real-time summaries of Internet traffic. In
SIGMETRICS, 2005.

[19] R. R. Kompella and C. Estan. The power of slicing in
Internet flow measurement. In IMC, 2005.

[20] B. Krishnamurthy and J. Wang. Traffic classification for
application specific peering. In IMW, 2002.

[21] S. Kundu, S. Pal, K. Basu, and S. Das. Fast classification and
estimation of Internet traffic flows. In PAM, 2007.

[22] A. Lakhina, M. Crovella, and C. Diot. Characterization of
network-wide anomalies in traffic flows. In IMC, 2004.

[23] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is
sampled data sufficient for anomaly detection? In IMC, 2006.

[24] A. W. Moore and D. Zuev. Traffic classification using
bayesian analysis techniques. In SIGMETRICS, 2005.

[25] V. Paxson. Bro: A system for detecting network intruders in
real-time. Computer Networks, 31(23-24):2435–2463, 1999.

[26] J. Reves and S. Panchen. Traffic monitoring with
packet-based sampling for defense against security threats.
InMon Technology Whitepaper, 2002.

[27] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield.
Class-of-service mapping for QoS: a statistical
signature-based approach to IP traffic classification. In IMC,
2004.

[28] Snort. http://www.snort.org.
[29] C. Taylor and J. Alves-Foss. NATE: Network analysis of

anomalous traffic events, a low-cost approach. In New
Security Paradigms Workshop, 2001.

[30] V. Sekar et al. LADS: Large-scale automated DDoS
detection system. In USENIX Annual Technical Conference,
2006.

[31] N. Williams, S. Zander, and G. Armitage. A preliminary
performance comparison of five machine learning algorithms
for practical IP traffic flow classification. ACM CCR, 2006.

[32] L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: Towards
programmable network measurement. In SIGCOMM, 2007.

[33] S. Zander, T. Nguyen, and G. Armitage. Automatic traffic
classification and application identification using machine
learning. In IEEE LCN, 2005.

