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Abstract
This paper presents the first wide-scale study of correlated
attacks, i.e., attacks mounted by the same source IP against
different networks. Using a large dataset from 1700 in-
trusion detection systems (IDSs), we show that correlated
attacks are prevalent in the current Internet; 20% of all of-
fending sources mount correlated attacks and they account
for more than 40% of all the IDS alerts in our logs. We
also reveal important characteristics of these attacks. Cor-
related attacks appear at different networks within a few
minutes of each other, indicating the difficulty of warding
off these attacks by occasional offline exchange of lists of
malicious IP addresses. Furthermore, correlated attacks are
highly targeted. The 1700 IDSs can be divided into small
groups with 4-6 members that do not change with time;
IDSs in the same group experience a large number of corre-
lated attacks, while IDSs in different groups see almost no
correlated attacks. Our results have important implications
on collaborative intrusion detection of common attackers.
They show that collaborating IDSs need to exchange alert
information in realtime. Further, exchanging alerts among
the few fixed IDSs in the same correlation group achieves
almost the same benefits as collaborating with all IDSs,
while dramatically reducing the overhead.

1 INTRODUCTION
In this paper, we study correlated attacks, which we de-
fine as attacks mounted by the same source IP against
different networks. Currently, about 30,000 new ma-
chines are compromised daily [25], and then used to
launch attacks on other parts of the Internet. In many
cases, the same machines are involved in multiple at-
tacks against different networks [25]–i.e., correlated at-
tacks. In addition to being an Internet phenomenon
worthy of careful study, correlated attacks are impor-
tant for collaborative intrusion detection. The intru-
sion detection system (IDS) at a network can exchange
information about recent alerts and offending IPs with
other IDSs. Future packets from suspicious source IPs
can be flagged to be dropped or scrutinized. Such col-
laboration is most effective when it happens between
networks experiencing correlated attacks.1

We present the first large scale empirical investiga-
tion of attack correlation in the Internet. We analyze
logs from 1700 IDS/firewalls deployed in US and Eu-
rope. Our data is rich; in addition to sanitized logs
from DSHIELD [2] and multiple universities, it con-
tains detailed attack logs from 40 IDSs maintained by
a Tier-1 provider to protect its customer networks. The
logs cover 1-3 months, and a big chunk of the IP ad-
dress space. In contrast to prior work, which has fo-
cused on the design of collaborative intrusion detection
systems [28, 29, 21, 9, 26, 22], we address the following
two questions:

• How prevalent is attack correlation in the current
Internet? Although collaboration to detect com-
mon attackers seems plausible, there is no quan-
tification of the potential benefits. Measurements
of the frequency with which different networks be-
come victims of a common attacker, the types of
shared attacks, and the quantity of the resulting
IDS alerts are important to gauge whether collab-
oration is worth the effort.
• How can an IDS pick trusted and effective collab-
orators? Allowing IDSs to exchange alerts to col-
laborate against common attackers requires ad-
dressing two issues: overhead and trust. Exchang-
ing alert data with thousands of IDSs in realtime
is a resource intensive task. Hence, an IDS needs
to pick its collaborators intelligently to minimize
the overhead and maximize the utility of the col-
laboration. Furthermore, two networks need to
establish trust before they can exchange IDS data.
Otherwise, a network cannot ensure the informa-
tion it receives is not maliciously manipulated to
make certain IP addresses look as attackers. Also,
it cannot ensure that the information it provides
will not leak internal vulnerabilities to malicious
entities.

Our study results in 4 major findings.

(a) The extent of attack correlation: Correlated
attacks are prevalent in the Internet; 20% of the of-



fending IP sources attack multiple networks, and these
common attackers are responsible for 40% of the total
alerts in our dataset. Further, shared attackers attack
different networks within a few minutes of each other,
emphasizing the advantage of realtime IDS collabora-
tion, as opposed to sharing attack logs offline.

(b) Reducing collaboration overhead by exploit-
ing correlation structure: We analyze the spatial
structure of attack correlation. We discover that the
1700 IDSs in our dataset can be divided into small
groups of 4-6 members (about 0.4% of the IDSs in our
set); IDSs in the same group experience highly cor-
related attacks, whereas IDSs in different groups see
uncorrelated attacks. Collaborating with only IDSs in
the same correlation group achieves the same utility
obtained from collaborating with all IDSs, while dra-
matically reducing the collaboration overhead.
The small correlation groups seem to arise from re-
cent attack trends. In particular, victim sites in the
same group may be on a single hit list, or might be
natural targets of a particular exploit like the Santy
worm which attacked popular phpBB discussion fo-
rums scoured from search engines. We examined the
correlated attacks in each group for cases where full at-
tack details are available. Indeed, each group seems to
be characterized by a specific attack type, e.g., there
are SMTP groups, NT groups, IIS groups. This in-
dicates that targeted attacks create small correlation
groups of sites that run particular software/services.

(c) Scalable Trust Establishment: Our measure-
ments reveal that correlation groups are fairly stable
and their membership persists for the duration of the
dataset (1-3 months). Thus, each network needs to col-
laborate with only 4-6 fixed networks in its group. The
small number of IDSs in a group and their persistent
membership allows a network to check their credibility
offline and establish trust using an out-of-band mech-
anism such as legal contracts or reputation.
A network still needs to learn who is in its correlation
group. This service can be provided by a few trusted
nonprofit organizations, like CERT [1] and DSHIELD
[2], or commercial entities. They receive sanitized alert
data, (containing only time and offending source IP),
from participating networks, analyze it for attack cor-
relation, and inform the participating networks about
others in their correlation group. The process is scal-
able because correlation groups are persistent for long
intervals (months) and do not need frequent updates.
Indeed, DSHIELD already has the means to provide
this service to its participant networks.

(d) The importance of picking the right col-
laborators: We provide rough estimates of the over-
head and detection capability obtained via different

choices of collaborating IDSs. We focus on collabo-
ration to quickly blacklist malicious IP sources. Using
a trace driven simulation, we compare the following
schemes: (1) correlation-based collaboration (CBC),
where each IDS collaborates with only IDSs in its cor-
relation group; (2) random collaborators, where an IDS
collaborates with the same number of IDSs in its corre-
lation group but picks the identity of its collaborators
randomly. (3) local detection with no collaboration;
(4) collaboration with all IDSs in the dataset;
The results of our evaluation emphasize the impor-
tance of picking the right collaborators. Mainly:

• CBC has almost as good detection capability as
collaborating with all IDSs, but generates less
than 0.3% of the traffic overhead. It detects 95%
of the attackers detected by collaborating with
all IDSs and reduces alert volumes by nearly the
same amount.
• In comparison with local detection, CBC increases
the number of detected common attackers at an
IDS by 30% and speeds up blacklisting for about
75% of the common attackers. As a result of
the blacklisting, correlation-based collaboration
reduces the size of the log that the administra-
tor has to examine by an additional 38%.
• Replacing the IDSs in the correlation group by
random collaborators reduces the detection capa-
bilities dramatically and does not add much be-
yond local detection.

Table 1 defines the terms used in this paper.

2 DATASET AND METHOD
2.1 Dataset
Our dataset is both large and rich. We use logs col-
lected at 1700 different IDSs deployed in US and Eu-
rope. Our logs can be divided into 3 distinct sets based
on their origin: (1) 40 IDSs on different networks in a
Tier-1 ISP; (2) DSHIELD Logs; (3) University logs.
The logs cover periods of 1-3 months. They span a
relatively large fraction of IP address space. In ad-
dition to a /8 ISP space, the DSHIELD data contain
logs from many /16 and /24 networks. This is the first
studied dataset of its size that provides detailed alert
information from deployed IDSs in the commercial In-
ternet. Table 2 provides a summary description of the
dataset. A detailed description is below.

(a) ISP Logs : We have logs from 40 IDSs deployed in
a large ISP with a /8 address space. The IDS boxes
protect different customer networks and span a large
geographic area, but they are all administered by the
ISP and hence have identical characteristics and signa-
ture sets. The signature set is large and diverse con-



Term Definition

Correlated Attacks Two attacks are correlated if they are mounted by the same source IP.
Alert An alarm raised by a sensor when it encounters a suspicious event, e.g. a packet or set of

packets that contain a known exploit.
Correlated IDSs Two IDSs are said to be correlated if more than 10% of their attacks are correlated.
Correlation Group of IDSs A set of IDSs whose attacks are highly correlated.
Correlation Vector of IDS i is ~vi = (vi1, ..., vij , ..), where vij = 1 if j ∈ correlation group of i, and otherwise vij = 0.
Blacklist A list of suspicious IP addresses whose packets are dropped or given unfavorable treatment.

Table 1: Definitions of terms used in the paper

ISP dataset DSHIELD University datasets

# of IDSs 40 1657 3

Address space Class A 5 Class B, 45 Class C and 2 Class B, 1 Class C
several smaller networks

Period July 1 - August 30, 2004 Dec. 15, 2004 - Dec. 15, 2004 -
Dec. 15, 2004 - Jan. 15, 2005 Jan. 15, 2005 Jan. 15, 2005

Richness Detailed alerts, Dest. IP addresses Detailed alerts,
unanonymized anonymized unanonymized

Avg #alerts/day/IDS 40000 15000 30000

Table 2: Description of the 3 datasets

b)

ISP Dataset log recorda)

DSHIELD log record

Date Destination portDestination IPSource port Source IPAlert Count

164.120.83.253

Provider Hash

12345678

Time

10 20 32789*.0.0.110:00:072004−12−20

Direction Destination IP Alert Type Attack information

164.120.83.253[In]10:00:07 10.0.0.1 RPC:PROTOCOL−EVADE (tcp,dp=32789,sp=20)

Time Source IP

(ABCDEF)

Sensor ID

TCP Flags

S

Figure 1: Log records for the ISP dataset and the DSHIELD dataset. The ISP dataset also has packet
headers for each log record. The DSHIELD dataset has the destination IP anonymized.

sisting of over 500 different alerts. The logs contain full
unanonymized packet headers for all suspicious pack-
ets, as shown in Figure 1a. Hence unlike the DSHIELD
data described below, we have access to the offending
packet as well as the nature of the offense. The logs
cover two separate periods: one period from July 1
to August 30, 2004 and the other from December 15,
2004 to January 15, 2005. The data exhibits a large
amount of variation in the kind of attacks seen (over
100 different attack types) as well as the distribution
of attacking IP addresses (over 100000 unique source
addresses) and 40000 alerts/day/IDS.

(b) DSHIELD Logs : DSHIELD is a global repository
set up as a research initiative as part of the SANS insti-
tute. Participating organizations provide IDS/firewall
logs, which DSHIELD uses for detection and analysis
of new vulnerabilities, and blacklist generation. Since
the IDS systems which participate in DSHIELD em-
ploy widely varying software, DSHIELD uses a mini-
mal record format for its logs and scrubs the high order

8 bits of the destination IP address, as shown in Fig-
ure 1b. The entities participating in DSHIELD vary in
size from several Class B networks to smaller Class C
networks and are distributed throughout the globe [28,
2]. The logs are of substantial size with nearly 15000
alerts/day/IDS.We have collected DSHIELD logs from
1657 IDSs for the period from Dec. 15, 2004 to Jan.
15, 2005 corresponding to the ISP dataset.

(c) University Logs: Finally, we collect a set of logs
from IDS/firewall systems deployed at 3 universities
U1, U2 and U3. Of these we have access to raw data
complete with packet headers and nature of offense de-
tected in U1. The second university U2 provided us
with logs from running the Bro IDS [19], but with pro-
tected addresses anonymized. The signature set de-
ployed is different and the alerts consist mostly of scans
of IP addresses as well as port-scans. The third univer-
sity U3 provided us with firewall logs which consisted
of blocked connection attempts. The University logs
generate 30000 alerts/day/IDS on the average.
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Figure 2: CDF of inter-arrival times of consecu-
tive alerts from a source in minutes. The CDF is

taken over the inter-arrival times. 95% of consecu-

tive alerts from a source arrive within 10 minutes of

each other, the rest are separated by several hours.

A few limitations are worth mentioning. Except for
the ISP logs, the other IDSs in the logs are largely inde-
pendent. We do not have access to their configurations,
and hence we do not know the signature sets they em-
ploy, or even the platforms they use. This means that
some of the attack correlation may be hidden because
of differences between IDS signature sets. Second, we
do not have information about the nature or the busi-
ness of the protected networks, and thus cannot tell
whether these issues play a role in attack correlation.

2.2 Method
Before studying attack correlation, we clean the data
from obvious false positives, and analyze it to find a
meaningful definition of the term “attack correlation”.

2.2.1 Filtering

IDS logs are prone to flooding with alerts, many of
which are innocuous alarms. For example, the ISP
and University data sets contain innocuous alarms trig-
gered by misconfigurations, P2P applications like eDon-
key, malformed HTTP packets etc. Many of these were
already flagged as false positives by the security admin-
istrators of the ISP. Since these are not actual attacks,
they do not help in detecting attack correlation among
different sites. Hence we filter out known false positives
from the ISP and universities logs. We consider all the
remaining alerts to be parts of valid attacks. Of course
we cannot do this for the DSHIELD dataset, since we
do not know the nature of the alert.

2.2.2 Attack Durations

To carry out this study, we need to extract attacks from
IDS logs. We consider a stream of suspicious packets
from the same source to an IDS with an inter-arrival
smaller than 10 minutes as an attack. Below we explain
why a separation window of 10 minutes is reasonable.
To find a meaningful separation window, we plot a

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11

C
um

ul
at

iv
e 

Fr
ac

tio
n 

 o
f I

D
S

s

No. of correlated IDSs

Source IP
Source subnets

Source IP + Dst Port
Source IP + Alert type

Source IP + Dst Port + Alert Type

Figure 3: CDF of the size of the correlation groups
for different definitions of attack correlation for the

ISP and U1 datasets. The CDFs are taken over the
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CDF of inter-arrival times of consecutive alerts from
the same source at an IDS in Figure 2. The CDF shows
that 90% of the alerts from a source arrive within a
minute of each other, these are likely to belong to the
same attack event. The knee in the CDF happens at
10 minutes, inter-arrival times larger than 10 minutes
are spread out to several hours. We pick 10 minutes as
the window because about 95% of the alerts from the
same source arrive separated by less than 10 minutes
and the other 5% have widely-spread interarrivals.

2.2.3 Defining Attack Correlation

How should one define attack correlation? Should all
fields in the alerts received at different IDSs be the
same, or is it enough to consider one or two fields?
Furthermore, how long can the interval between the
two attacks at two different IDSs be for them to be
still considered correlated?
Attack correlation can be parameterized by the set
of correlated header fields and the time window used
to compute the correlation. We define two attacks to
be correlated if they share the source IP address and
start within 10 minutes of each other. Both choices
are based on detailed analysis of the data that showed
almost no sensitivity to including additional fields in
the correlation beyond the source IP and using time
windows larger than 10 minutes. Below we describe
this analysis in detail.

(a) Picking the correlation fields: Defining attack
correlation based on the destination IP address is not
useful since attacks seen by a particular IDS will have
their destinations in the local network. Also the source
port is likely to be picked randomly and is not useful
for defining attack correlation.



We consider the following definitions of correlated
attacks: 1) source based, 2) source and the destination
port combined, 3) source and alert type combined, 4)
source, alert type, and destination port combined, 5)
and source subnet based. We conduct this analysis for
the ISP dataset and the U1 datasets, for which we have
access to all these fields.
Since our main interest is to find who is correlated
with whom, we consider how different attack correla-
tion definitions affect the size of the correlation group
of a IDS (see Table 1). Correlated groups are explained
further in §3, but for the purposes of this analysis they
are simply the set of IDSs with which a particular IDS
shares correlated attacks.
Figure 3 plots the cumulative distribution functions
(CDFs) of the size of the correlation group of an IDS.
Different CDFs correspond to different correlation fields.
The figure shows that, except for the CDF for source
subnets, all the other CDFs are very close together.
Classification based on the attacking source subnet re-
sults in slightly higher correlation, but the difference
is not substantial. Further, classifying based on source
subnet carries the danger of blacklisting an entire sub-
net resulting in innocent sources being blocked. Since
including extra fields in the definition of correlation in
addition to the source IP has no significant impact on
the correlation CDF, we define attack correlation based
solely on the similarity of the offending source IP.
The above leads to an interesting result: performing
attack correlation analysis requires minimal informa-
tion, namely attack time and offending source IP.

(b) Picking the maximum time window between
correlated attacks: Unless stated differently, a 10
minute window is used for determining correlated at-
tacks at different IDSs. We tried different time win-
dows in the [5, 30] minutes range. Windows less than 10
minutes resulted in decreased attack correlation while
there was not much difference for windows greater than
10. Hence we picked the minimum window possible
i.e., 10 minutes. Thus, if two attacks at two IDSs start
within 10 minutes of each other, then they are consid-
ered correlated.

(c) Correlation threshold: We say that two IDSs
are correlated if more than 10% of their attacks are
correlated. We justify the threshold below. We com-
pute the CDF of correlation taken over all IDSs with
non-empty groups (i.e., IDSs that are correlated with
at least one other IDS). For 90% of the IDS, the correla-
tion (percentage of correlated attacks w.r.t all attacks)
was higher than 10% ranging upto 57%. For the re-
maining 10% of the IDS, the correlation was slightly
higher than 0%. Such small values are due to a few
attacks being shared and do not reflect any significant
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Figure 4: Prevalence of common attackers. Figure
shows the CDFs of the average number of common

attackers and local attackers per day per IDS. A

common attacker is a source IP that is flagged as

suspicious at two or more IDSs. 90% of the studied

IDSs see more than 100 common attacking IPs per

day. The average number of common attacking IPs

at an IDS is about 1,500 while the maximum can

be as large as 25,000.

correlation between the two IDSs.

3 EXTENT OF ATTACK CORRELATION
3.1 Do IDSs see common attackers?
A common attacker is an IP address that generates
alerts at two or more IDSs. We compute the average
number of common and uncommon attacking IP ad-
dresses for each IDS per day. Figure 4 compares the
CDF of common attackers with the uncommon/local
ones. The CDF is taken over all IDSs. The graphs
show that on average an IDS sees 1500 shared offend-
ing IPs per day, and 6000 unshared offenders. Thus,
about 20% of the suspicious source IP addresses ob-
served at an IDS are also seen at some other IDS in
the dataset. These common source IP addresses ac-
count for 40% of all alerts in the logs. Thus, correlated
attacks happen quite often and constitute a substantial
fraction of all attacks.

3.2 How many victims does a common at-
tacker attack?

The previous section quantified how many source IP
addresses at each IDS are common attackers, here we
focus on the number of victims of a common attacker.
Figure 5 plots the CDF of the number of IDSs targeted
by a common attacker. The CDF is taken over all com-
mon attacker IPs. On the average, a common attacker
appears at 10 IDSs, which is about 0.6% of all IDSs in
the dataset. The high average of 10 victims seems to
comply with recent trends in using botnets to mount
multiple attacks against many target networks [25].

3.3 Time Between Correlated Attacks
How long does it take a common attacker before he
attacks the next network? If this time is long then
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ferent victims.
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Figure 6: Figure shows the CDF of the interarrival
times of correlated attacks at different IDSs. More

than 75% of the correlated attacks arrive within 10

minutes of each other. This emphasizes the need

for realtime exchange of attack data.

the exchange of alert data can be offline, but if it is
short then effective collaboration against common at-
tackers requires realtime exchange of information. We
compute interarrival times of attacks from the same
source at multiple IDSs, i.e., the difference between
when the first time the attacker is observed at differ-
ent IDSs. Figure 6 shows the CDF of these interarrival
times. More than 75% of the time, a common attacker
attacks the next IDS within 10 minutes from the pre-
vious IDS. Attackers therefore mount multiple attacks
within a span of a few minutes, suggesting that collabo-
rative detection of such attackers has to be in realtime.

4 ATTACK CORRELATION STRUCTURE
Why is the structure of attack correlation important?
Since correlation is prevalent, it would be beneficial for
IDSs to collaborate to speedup the detection of com-
mon attackers. However, in §3.3, we have shown that
common attackers attack their victim networks within
a few minutes of each other. Thus, to effectively collab-
orate against common attackers, the IDSs need to ex-
change information in realtime. An IDS in our dataset
generates on average 1500 alerts/hour. Exchanging
alerts in realtime with thousands of IDSs creates an

unacceptable overhead. Thus, we are interested in find-
ing how many collaborators each IDS needs to have in
order to achieve the benefits of collaboration without
incurring much overhead. To answer this question, we
examine the spatial and temporal structures of attack
correlation, i.e., how many IDSs are usually correlated
with each other and how often does the set of IDSs a
particular IDS is correlated with change over time?

4.1 Correlated IDSs
For the objective of detecting common attackers, an
IDS benefits from exchanging alerts with only those
IDSs whose attacks are correlated with its own. We
call this set of IDSs its correlation group. If correla-
tion groups are small, i.e., much smaller than all IDSs,
then by focusing only on the IDSs in its correlation
group, an IDS can achieve most of the benefits of the
collaboration at little overhead.
We plot in Figure 7 the CDF of the number of IDSs
with which an IDS is correlated (i.e., the size of its cor-
relation group) for all 1700 IDSs in our dataset. We
consider two cases: simultaneous correlation, in which
two attacks are correlated if they share the same source
IP and happen within 10 minutes of each other, and
general correlation, in which two attacks are correlated
if they share the source IP. The former helps detect
distributed attacks, while the latter helps detect ma-
licious sources which should be blacklisted. General
correlation is by definition greater than simultaneous
correlation. The figure shows that on average each IDS
is correlated with 4− 6 other IDSs, i.e., less than 0.4%
of the total number of IDSs. Further, 96% of the IDSs
are correlated with less than 10 IDSs.
Note that the plots for simultaneous and general cor-
relation are fairly similar. Though the average number
of IDSs with which an IDS shares attacks increases to
nearly 5, the CDF does not change much. Again, this
shows that when correlated attacks happen at different
locations in the Internet, most likely they happen with
a short period.

4.2 Persistence of IDS Correlation
We would like to examine how often the correlation
group of an IDS changes. If the membership of the
correlation group of an IDS is stable then each network
can spend the time to identify its correlation group
offline. Once the correlation group is identified, the
actual exchange of alerts is done in realtime. On the
other hand, if the members of an IDS’ correlation group
keep changing over short intervals, collaboration will be
hard as it requires re-examining attack correlation and
deciding in realtime whether to collaborate.
We need to define a measure of how a group of IDSs
is changing. We assign the IDSs consecutive IDs. For
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each IDS i in our dataset, we create a correlation vec-
tor ~vi(n) whose length is equal to the total number
of IDSs in the dataset. We set vij(n) = 1 if IDS i is
correlated with IDS j, and 0 otherwise based on the
alerts they generate on day n. For example, ~vi(16) =
(0, 1, 1, 0, 1, 0, ..., 0) means that IDS i and IDSs 2,3, and
5 see correlated attacks on the 16th day in our dataset.
The difference vector for two days for a given IDS
is the vector obtained by subtracting the correspond-
ing correlation vectors for those days. For example,
the difference vi(17)− vi(0) indicates how the correla-
tion group of IDS i changes over a period of 17 days,
starting on day 0 in our logs.
We measure the persistence of attack correlation as
a function of time using the following metric:

fm−n =
1

N

∑

i

||~vi(m)− ~vi(n)||

||~vi(n)||
, (1)

where N = 1700 is the number of IDSs; vi is the corre-
lation vector of IDS i; and ||~v|| is the Euclidean norm
of the vector. Thus, fm−n is the average change in the
norm of the correlation vector between day n and day
m where m > n, normalized by the size of that vector.
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dicating that our results are robust against source

spoofing.

Figure 8 plots our measure of the difference in at-
tack correlation fi as a function of time in days along
with the standard deviation. It shows that, the correla-
tion vector does not change significantly with time. In
particular, on average the correlation vector changes
by less than 0.025 of its original value over a period
that spans a whole month. The insignificant change
shows that correlation happens consistently with the
same group of IDSs and is persistent over time.

4.3 Robustness to Source Spoofing
The correlation shown above considers all attacks, in-
cluding those which could be from spoofed source ad-
dresses. Intuitively, one would expect that source spoof-
ing does not affect the correlation structure as it is
usually done randomly, and thus unlikely to create a
well-defined structure. In order to estimate the effect
of spoofed sources on our results we divide the logged
attacks into two classes:

• Connection oriented attacks : Attacks which re-
quire establishing a TCP connection. This in-
cludes most non-flooding attacks and application
layer attacks (e.g SQL server, MS IIS server etc)
and formed 68% of all attacks.
• Connectionless attacks : Attacks which get flagged
due to incomplete TCP connection attempts or
those which do not require a TCP connection.
(e.g. SYN floods, UDP packet floods etc).

We can perform this classification only on the ISP data
and one of the Univ logs (U1). The rest of the logs do
not contain the necessary information. Connection-
oriented attacks should not have spoofed IP addresses
since they require the attacking machine to respond to
the TCP ACKs sent by the victim.
Figure 9 compares the correlation exhibited by the
connection oriented attacks to that exhibited by the
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Figure 10: Figure shows that the set of IDSs with
which an IDS is correlated is far from random. We

compare the distribution of correlated IDSs in our

dataset with that generated by having each com-

mon attacker target a small random set of IDSs.

The difference in entropy between random target-

ing and the empirical data is plotted. The empirical

distribution has, on average, 7.2 bits less entropy

than the one generated by random targeting; cor-

related IDSs are therefore far from random.

combination of all attacks. The figure plots the CDF of
the size of the correlation group for each IDS for each
kind of attack. The figure shows that the two CDFs
are very close, indicating that the correlation structure
is highly robust to source spoofing. Similarly, we have
performed the correlation persistence test in §4.2 on
connection oriented attacks and found the results to
be compatible with those in §4.2.

4.4 Is the structure due to random scans?
The fact that each IDS in our dataset shares attacks
with only a small and persistent set of IDSs is intrigu-
ing. Why do certain IDSs share attacks? Before an-
swering this question, we would like to do an addi-
tional test to ensure that the spatial structure of at-
tack correlation is not random. Suppose each worm
or attacker picks for victims a random subset of all
destinations, could this be responsible for generating
the attack correlation structure we see in the data?
The test described below shows that the answer to
the this question is “no”. The correlated attacks we
see are likely targeted attacks, i.e., the victims are not
randomly chosen; the same group of correlated victim
networks are chosen repeatedly, probably because they
are on one hit list circulating among the attackers, or
because they run the same software (as in the case of
the Santy worm [6]).
We consider the distribution of IDSs with which a
particular IDS is correlated. We compare this distri-
bution in our data with the corresponding distribution
generated by random targeting. We simulate random
targeting as follows. We pick an IDS, i, and look at all
of its correlated attacks. For each correlated attack,
we replace the set of IDSs with which IDS i shares this

attack with a random set of IDSs of the same size. We
repeat this process for each attack at IDS i. For each
IDS j, where j 6= i, the number of correlated attacks
with i, after proper normalization, represents the prob-
ability that IDS j is correlated with IDS i. We compare
this probability distribution in our data with the one
generated by random attack targeting. In our data,
this distribution is highly biased, i.e., an IDS i is cor-
related with a few other IDSs and uncorrelated with
the rest of IDSs. Since we are interested in measuring
how far our data is from random targeting, we compare
the entropy of the two distributions. The entropy of
the distribution of a random variable X is:

H(X) = −
∑

xi

P (xi)log(P (xi)). (2)

This analysis is repeated for each IDS and the differ-
ence in entropies are computed for each IDS. Figure 10
shows the CDF of these entropy differences. The fig-
ure shows that the set of IDSs with which an IDS is
correlated is far from random. It shows that the empir-
ical distribution has, on average, 7.2 bits less entropy
than the one generated by random targeting. Note that
number of IDSs in our system is 1700, hence the max-
imum entropy is 10.73 bits. The difference in entropy
is also bounded by the same value. Thus, an entropy
difference of 7.2 bits is very high, which shows that the
set of correlated IDSs in our data is far from random.

4.5 Origin of IDS Attack Correlation
So why two IDSs share correlated attacks? We investi-
gate two possible reasons: 1) closeness in the protected
IP space, 2) similarity in the software and services run
on the two sites. Our results show that the latter is the
likely reason of attack correlation between two IDSs.

(a) Closeness in IP space: Some attackers employ
scanning techniques to discover vulnerabilities. They
start from a randomly selected IP and then scan se-
quentially. If the scanned address spaces belong to dif-
ferent sites, the IDS at the respective sites are likely
to show attack correlation. Thus, closeness in the IP
space could be a reason for attack correlation.
We compute the distance between two prefixes P1
and P2 of equal length as the decimal value of the bit-
string produced by taking XOR of P1 and P2. If the
prefixes are of unequal length, the shorter prefix is bit-
shifted to the left to equalize the lengths. The distance
in IP space between two IDSs i and j, Dij , is defined
as the IP distance between their protected address pre-
fixes. Also for each IDS pair we generate the vector of
correlation ~Cij , where cij is the percentage of attack
at i which are correlated with some attacks at j. If
proximity in the IP space is a reason for attack corre-
lation, then the more the distance between IDSs i and



j is, the less likely they share correlated attacks–i.e.,
~Dij and ~Cij should be inversely correlated. Thus, we
compute the cross correlation between these two vec-
tors.2 Note that a cross correlation around zero means
independence. Figure 11 plots the cross correlation be-
tween attack correlation and distance in IP space. The
x-axis is the IDS id. Note that the correlation with IP
space hovers around zero, indicating that attack cor-
relation is independent from the distance in IP space.
Thus, having nearby IP prefixes does not have a visible
impact on sharing correlated attacks.

(b) Similarity in Software and Services: Small
correlation groups may be due to recent attack trends.
In particular, two IDSs may share correlated attacks
because they are on a single hit list, or they run soft-
ware or a service that is targeted by the common at-
tacker. For example, the Santy worm uses a vulner-
ability in popular phpBB discussion forum software
to spread and uses a search engine to find vulnerable
servers [6].
Unfortunately, except for the university logs (U1), we
do not know the identity of the protected networks, the
type of software they run, or the services they provide,
and hence cannot check attack correlation against that
information. Instead we perform two indirect tests.
First, we have examined the correlated attacks in
each group for the case of the ISP data where full attack
details are available. Indeed, except for one correlation
group, each group seems to focus on a specific shared
attack, i.e., more than 60% of the correlated alerts in
that group are of a particular type. There are SMTP
groups, NT groups, IIS groups, etc. This should not
be surprising as recent attacks obtain a list of networks
that run a software with the targeted vulnerability via
a search engine or other ways and send only to those
sites [6].
Second, we try to indirectly infer the software and
services run on the correlated networks by compar-
ing the type of alerts they generate. We compute
the distribution of alert types generated by each net-
work and compare them against each other. We divide
alerts into 13 broad categories: alerts due to attacks
on DNS servers, web servers, ftp, RPC services, Win-
dows Server 2003, servers running RPC, mail servers,
servers using SQL (both MS and MySQL), telnet and
ssh servers, attacks on routers, IRC servers, CIFS (SMB)
servers and miscellaneous. We compute the fraction of
alerts of each type in the IDS log. We consider this
distribution to be characteristic of the network itself,
and check whether attack correlation is correlated with
correlation in this distribution.
We express the alert distribution in a vector ~Vi with
13 elements. For example, ~Vi = (0.03, 0.2, ...) means
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Figure 11: Cross correlation between attack cor-
relation and: 1) distance in IP space, 2) an indi-

rect measure of site’s software and services. Fig-

ure shows that attack correlation is independent of

closeness in IP space. In contrast, attack corre-

lation seems to decrease with decreasing similar-

ity between the software run on the protected net-

works. The figure is for the ISP and U1 datasets

for which we have detailed alert logs.

that 0.03% of the alerts generated by IDS i are of cat-
egory 1, etc. We measure the distance between the
alert distributions at IDS i and j by the difference
~Dij = ||~Vi − ~Vj ||, where ||.|| is the Euclidean norm.

Similarly to the analysis in §4.5(a), we compare ~Dij
with ~Cij , where cij is the percentage of attack at i
which are correlated with some attacks at j. If sim-
ilar software and services are reasons for attack cor-
relation, then ~Dij and ~Cij should be inversely corre-
lated. We compute the cross correlation between these
two vectors. Note that a cross correlation around zero
means independence. whereas a negative cross corre-
lation means that an increase in the distance, ~Dij , is

correlated with a decrease in attack correlation ~Cij .
Figure 11 plots the cross correlation between attack
correlation and our indirect measurement of the sim-
ilarity of the software and services on the protected
networks. Note that attack correlation is negatively
correlated with our measure of the distance between
the software and services on the protected networks–
i.e., an increase in this distance results in a decrease
in correlation. Thus, it seems that one origin of attack
correlation across different networks is the similarity in
the software and services they run.

5 SUMMARY OF EMPIRICAL RESULTS
The results of our study of attack correlation can be
summarized as follows:

• Correlated attacks mounted by common attack-
ers against multiple networks happen quite often.
20% of the unique sources in our dataset generate
attacks at multiple IDSs, and common/correlated
attacks account for an average of 40% of all at-
tacks observed at an IDS.



• A network experiences attacks correlated with only
a few other networks. On average an IDS shares
attacks with 4-6 other IDSs which is just 0.4% of
the total number of IDSs, and 96% of the IDSs
share attacks with less than 10 other IDSs.
• Attack correlation persists over time–i.e., the sets
of IDSs that experience correlated attacks did not
change for the duration of our study (1-3 months).
• Though we do not know all origins of attack corre-
lation, our data shows that similarity in the soft-
ware and services run on the protected networks
plays an important role in making them endure
correlated attacks.
• Common attackers tend to attack different net-
works within a few minutes of each other. Thus,
there are considerable advantages for realtime shar-
ing of alerts.
• Discovering the correlation group of an IDS (i.e.,
who shares with whom) requires minimal IDS-
related information, namely attack time and of-
fending source IPs.
• Our study of the correlation for connection-oriented
attacks shows that the correlation groups and their
member IDSs are robust to IP spoofing.

6 EFFICIENT COLLABORATION WITH
TRUSTED PARTNERS

The major impediments to having independently ad-
ministrated IDSs collaborate on detecting common at-
tackers are: overhead and trust. Since common at-
tackers attack different networks within a few minutes
from each other, the IDSs need to exchange their alerts
in realtime. But exchanging alerts with thousands of
IDSs in realtime is impractical because of the resulting
overhead, and the potential of having malicious IDSs
incriminating innocent hosts or using the alert data to
discover the vulnerabilities of other networks.
We exploit the structure of attack correlation to solve
the above two problems.3 We propose a correlation-
based method for picking collaborators. By exchang-
ing alert data with only those IDSs in its correlation
group, an IDS minimizes the overhead of the collabora-
tion while maximizing its chances of detecting common
attackers. Furthermore, since the size of a correlation
group is small and its membership is stable, an IDS
can check using out-of-band mechanisms the reputabil-
ity of each of the IDSs in its correlation group. It can
use this information to decide whether to collaborate.
If needed, the IDS can use legal contracts to enforce
trust and privacy. If the IDSs choose to collaborate,
they use a secure channel to exchange information so
that eavesdroppers cannot snoop.
IDSs need to know which other IDSs are in their cor-
relation group. We envision a number of non-profit or-

ganizations (like CERT and DSHIELD) and commer-
cial entities that discover attack correlation across IDSs
and report to each network the identity of the other
networks in its correlation group. We call these entities
Attack Correlation Detectors (ACD). A network may
participate in one or more ACDs. The choice of ACD
may depend on the number and types of networks par-
ticipating in the ACD, its reputation, etc. The ACD
occasionally collects logs from participant IDSs. The
logs cover a particular period that can be as small as a
single day randomly chosen by the ACD. The logs have
minimal sensitive information. Each record in the log
provides the following fields: (Time, Source IP, Packet
Count). Our analysis in §2.2.3 shows that these fields
are enough for detecting attack correlation. The ACD
performs the correlation analysis and informs each net-
work of its correlation group, expressed as a list of the
following records: (correlated IDSs, level of correla-
tion). The correlation analysis is not intensive, the
average time taken to analyze a days worth of logs is
just 4 hours on an Intel Itanium 1.5 GHz SMP ma-
chine with 2 GB of memory. Further since IDS corre-
lation is persistent over atleast a month, the analysis
is repeated only after such long periods of time. Once
organizations know their correlation group, they can
independently decide with whom to collaborate, bas-
ing their decisions on the level of correlation and the
identity of the peer network.
Integrating new IDSs and updating participant IDSs
about changes in their correlation can be performed
incrementally. A new IDS provides logs from the same
collection point so that its correlation group can be
found. Updates are incremental, since IDSs need to be
informed only if their correlation group changes. Due
to the persistence of membership in these correlation
groups (a month or more), the update process can be
performed in a lazy fashion with the cost amortized
over long periods of time.
It should be noted that acting as an ACD is relatively
simple. Indeed, DSHIELD already has the means to
provide this service to its participant networks.

6.1 Discussion
(a) Scalability: Correlation-based collaboration en-
sures scalability by the small size of the groups and
the persistence of correlation among IDSs across long
timescales. In particular, over 96% of the IDSs in our
dataset are correlated with less than 10 other IDSs.
The overhead of setting up peering and exchanging in-
formation is therefore relatively small. Additionally,
the persistence of correlation over months ensures the
scalability of ACDs. The ACDs analyze correlation at
these timescales, amortizing the cost of the analysis.



(b) Privacy: Recall that for discovering its correlation
group an IDS provides the ACD with logs of attack-
ing IP addresses, alert time, and packet count. Thus,
none of the sensitive alert fields such as the attack type,
the destination, and the destination port, are needed.
Also the data is revealed only to the ACD and does not
get published. On the other hand, privacy of the data
exchanged with one’s collaborators is provided largely
because IDSs have the ability to independently decide
which IDSs to collaborate with, and what to reveal.
Further, the persistence of correlation allows the col-
laborators to use legal contracts to protect their data,
if necessary.

(c) Protecting against spreading lies: An IDS
that lies about its attackers to the ACD does not harm
the system. Such lies are unlikely to be correlated with
any of the attacks seen at other IDSs, even if they do,
each IDS checks independently the credential of each
of its collaborators before sharing any alert data with
them. Lying to one’s collaborators is unlikely as their
reputations are carefully checked and information ex-
change is protected by legal contracts.

7 PICKING THE RIGHT COLLABORATORS
We present a rough evaluation of the overhead and
the enhancement in detection capability obtained via
various choices of collaborating IDSs for detecting cor-
related attacks. We compare the following 4 schemes
for picking collaborators:

• Collaborate With ALL IDS: An IDS collabo-
rates with all other IDSs in our dataset.
• Correlation-Based Collaboration (CBC):
Each IDS collaborates with only those IDSs in its
correlation group.
• Random Collaboration: An IDS picks a ran-
dom set of IDSs to collaborate with. To ensure
the comparison with CBC is fair, each IDS col-
laborates with as many IDSs as there are in its
correlation group.
• Local Detection: in this scheme, detection is
based on local alerts with no collaboration with
other IDSs.

7.1 Blacklisting Malicious Sources
In order to compare the above schemes, we need to
specify a protocol for exchanging alerts and processing
the acquired information. We use the simple approach
described below. This approach is not necessarily op-
timal, but it suffices to evaluate the relative benefits of
the different methods of picking collaborators.
The IDSs collaborate to detect low rate attackers
and speed up the detection of moderate rate attackers.
Each IDS maintains a Blacklisting Threshold and

a Querying Threshold. A source IP address is black-
listed when the number of suspicious packets from it
crosses a Blacklisting Threshold. An IDS queries
its collaborators when the number of malicious packets
from a source IP address crosses the Querying Threshold.
If the aggregate rate of the offending source at all col-
laborators exceeds the Blacklisting Threshold the
source is blacklisted. Once a source is blacklisted it
is set apart for further investigation and an alarm is
triggered to all collaborators.
The time taken to blacklist a source depends on two
factors; the rate at which the source is attacking as
well as the chosen Blacklisting Threshold. In pick-
ing a particular threshold, there is an inherent tradeoff
between false positive ratio and false negative ratio.
A low Blacklisting Threshold will result in a high
false positive ratio while a high threshold will miss
many moderate rate attacks resulting in a high false
negative ratio. The right value for the Blacklisting
Threshold is site specific and should be picked to op-
timize the false negative and false positive ratios.
We use the ISP and U1 datasets to find a good value
for the thresholds because these logs contain enough
information to distinguish many cases of false posi-
tives. We set the Blacklisting Threshold to 1000
malicious packets/day because in our dataset, this rate
results in a false positive ratio less than 1%. We set
the Querying Threshold to 50 malicious packets/day.
The Querying Threshold has to be substantially lower
than the Blacklisting Threshold, but there is noth-
ing special about the value of 50 packets/day. In real-
ity, these thresholds will vary depending on the local
sites configuration as well as the nature of the alert
itself. The above thresholds seem reasonable for those
IDSs in our dataset for which we have detailed attack
information.
To simulate the attacks, we replay the traces in our
datasets. We divide one month worth of traces into two
equal parts, corresponding to 15 days each. The corre-
lation groups are generated from one set (the training
set), while the various schemes for picking collabora-
tors are tested on the other set (the test set).

7.2 Detection Speedup
Figure 12 plots the time it takes to blacklist a source
in each of the four approaches: CBC, Local Detec-
tion, Random Collaboration and Collaboration with
All IDSs. The time to blacklist a source is defined
as the time difference between the instant the source is
blacklisted by some IDS and the instant the source was
first detected by any of the collaborators. The plots are
only for sources detected at more than 1 IDS, because
localized sources always require the same time to de-
tect under all four schemes. The malicious sources on
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Figure 12: Comparison of time taken in min-

utes for blacklisting a shared malicious source for

CBC, Local Detection, Random Collaboration and

Collaboration with All IDSs. Short duration at-

tacks (under 5 minutes) which number around 25%

do not show significant difference, local detection

works nearly as well. CBC performs nearly as well

as collaboration with all IDSs in detecting longer

duration, slower attacks. Random collaboration of-

fers no benefit except for a few sources.

the x axis are sorted according to their detection time
by Local Detection. Note that for this figure, we set
Blacklisting Threshold to a total of 1000 packets,
rather than 1000 packet/day, so that each approach
will eventually detect the malicious source.
The figure shows that, for fast sources which can be
detected locally in 5 minutes or less, there is no signif-
icant difference among the four schemes. These form
nearly 25% of all classified common attackers. The
curves diverge for slower sources which take longer to
blacklist locally. Random collaboration offers no ben-
efit, i.e., the time taken to blacklist is the same as Lo-
cal Detection except for a few sources. In contrast,
CBC speeds up detection for about 75% of the studied
sources, and performs nearly as well as collaborating
with all IDSs. There are a small number around 5%
of slower sources which take longer to detect in CBC
because of them being correlated across IDSs which do
not belong to each other’s correlation group.

7.3 Overhead
In comparison with Local Detection, the speedup in
detecting malicious sources is obtained at the cost of
communication among the collaborators. The aver-
age query rates in CBC and Random Collaboration
are fairly close. They both have an average of about
1.3 query/minute/IDS, with a standard deviation of
2.9. In comparison, collaborating with all IDSs has

CBC Local Random All

Detection Collaboration IDSs

Alert

Reduction 73.44% 35.48% 37.77% 80.56%

Sources

missed 5.02% 38.65% 36.69% 0%

Table 3: Comparison between 4 schemes for pick-
ing collaborators in terms of alert volume reduction

and the number of malicious sources missed.

a very high overhead; the average query overhead is
454.9 query/minute/IDS, which is 2 orders of magni-
tude higher than CBC.

7.4 Effectiveness
Faster detection of malicious sources also results in sig-
nificant reduction in alert volume. Table 3 lists the av-
erage reduction in alert volume from blacklisting under
CBC, Random Collaboration, Collaborating with all
IDSs and Local Detection. On average, CBC results in
73.44% reduction in alert volume (i.e., the size of the
log that admin should examine). The value is close to
the one obtained by collaborating with all IDSs, which
is 80.56%. Local Detection, on the other hand, per-
forms significantly worse; it reduces the alert volume
only by 35.48%. There is no discernible difference be-
tween Local Detection and Random Collaboration, the
reduction in alert volume is only marginally better at
37.77%. The above numbers are for all attacks, corre-
lated and uncorrelated. Thus by being able to quickly
detect correlated attacks, CBC reduces alert volume
by a further 38% over Local Detection.
Table 3 also lists the fraction of correlated malicious
sources missed by CBC, Local Detection, and Random
Collaboration in comparison to Collaborating with all
IDSs. A malicious source is missed if the scheme is
unable to blacklist it due to incomplete information,
though it is blacklisted all IDSs collaborate. CBC
misses only 5.02% of the malicious sources, while Local
Detection misses 38.65% of them. Random collabora-
tion scheme is almost similar at 36.69%. These val-
ues depend on the thresholds used, but they demon-
strate the order of magnitude improvement obtained
in CBC and the insignificant difference between CBC
and collaborating with all IDSs. In summary, CBC im-
proves significantly over Local Detection. It increases
the number of detected sources by 33%, and reduces
the volume of alerts by an extra 38% beyond Local
Detection. It performs almost as well as the collabo-
rating with all IDSs. In contrast, a random choice of
collaborators is as bad as not collaborating.

8 RELATED WORK
Several proposals exist for building collaborative and
distributed intrusion detection systems [21, 9, 10, 26,



20, 23, 22, 8, 28], but none of them has studied attack
correlation. Our work extends many of these propos-
als with a mechanism for picking collaborators, and
maximizes the benefit of collaboration while limiting
its overhead.
Early distributed intrusion detection systems collect
audit data from distributed component systems but an-
alyze them in a central place (e.g., DIDS [21], ISM [9],
NADIR [10], NSTAT [26] and ASAX [8]). Recent sys-
tems have paid more attention to scalability (e.g., EMER-
ALD [20], GrIDS [23], AAFID [22], and CSM [27]). We
discuss a few of them below.
The Collaborative Intrusion Detection System [14]
involves dynamic groups of nodes that rapidly change
and exchange information. The set of nodes exchang-
ing information is not constant and is changed contin-
uously to cover all nodes in the system which limits its
scalability. COSSACK [11], another collaborative re-
sponse framework, is concerned more with alarm prop-
agation than detection itself. DOMINO [28] relies on
a hierarchy of nodes with different levels of trust and
aims to exchange blacklist information. The nodes are
placed such that IDSs protecting networks with close
destination address spaces are close together.
The Distributed Intrusion Detection System (DIDS)
[21] addresses system attacks across a network. At-
tacks such as doorknob, chaining, and loopback could
be detected when data from hosts within a given net-
work was combined under centralized control. Clever
attackers could still subvert DIDS by reducing the vol-
ume of attacks for a given network.
EMERALD addresses intrusions within large sep-
arately administered networks [20]. EMERALD in-
cludes features for handling different levels of trust
between the domains from the standpoint of a cen-
tralized system: individual monitors are deployed in a
distributed fashion, but still contribute to a high-level
event-analysis system. EMERALD appears to scale
well to large domains. The Hummer project [15] fo-
cuses on the relationships between different IDSs (e.g.,
peer, friend, manager/subordinate relationships) and
policy issues (e.g., access control, cooperation policies).
Finally, there has been work on specification and
event abstraction to allow multiple IDS boxes to share
attack information and collaborate on detection and
protection [5, 24, 7].
Attack Measurements & Analysis: A lot of work
has been done in characterizing attack characteristics.
Yegneswaran et al. [28, 18] study the global character-
istics of intrusions as well as Internet background ra-
diation. Network telescopes are used to study DoS ac-
tivity in [17]. Placement of blackholes in a distributed
Internet setting for global threat detection is addressed
in [3].

Analysis of Intrusion Alerts: GrIDS [23] col-
lects traffic and connections data. It analyzes TCP/IP
network activities using activities graphs and reports
anomalies when activity exceeds an user specified thresh-
old. Methods of discovering intent by correlating alerts
from different IDSs are presented in [12]. Algorithms
for sharing of alerts [13] in a privacy-preserving man-
ner could be a future avenue of research. Alert corre-
lation to reduce the number of alerts to be manually
examined is discussed in [4]. Alerts are inserted into
a relational database to be aggregated and the sum-
marized alert is presented to the operator. These are
orthogonal to our work and can be easily integrated.

9 CONCLUDING REMARKS
We have presented the first wide-scale study of attack
correlation in the Internet, i.e., attacks that share the
source IP but occur at different networks. Our dataset,
constituting of alert logs collected at 1700 IDSs, show
that correlated attacks are fairly prevalent in today’s
Internet; 20% of all the attacking sources are shared at-
tackers, and they are responsible for 40% of all alerts
in our logs. Shared attackers attack different networks
within a few minutes of each other, emphasizing the ad-
vantage of realtime collaboration between victim net-
works as opposed to sharing attack information offline.
Our results also show that the 1700 IDSs can be
grouped into small correlation groups of 4-6 IDSs; two
IDSs in the same correlation group share highly cor-
related attacks, whereas IDSs in different correlation
groups see almost no correlated attacks. Furthermore,
the correlation groups are stable and their membership
persists for months. Though not conclusive, our analy-
sis indicates that similarity in the software and services
running on the protected networks causes their IDSs to
show attack correlation.
Our empirical results have important implications for
collaborative intrusion detection of common attackers.
They show that it is quite important that each net-
work/IDS picks the right collaborators. Exchanging
alerts with thousands of IDSs in realtime is imprac-
tical because of the resulting overhead and the lack
of trust between these networks. Using a trace-driven
simulation, we show that picking at random a smaller
and fixed set of collaborators has almost no benefits
beyond local detection. In contrast, collaborating with
the 4-6 IDSs in one’s correlation group has almost the
same utility as collaborating with all 1700 IDSs in our
dataset with 350 times less overhead.
Finally, we note that our results reflect the state of
the Internet at the end of 2004 and the beginning of
2005. It is hard to predict the extent of attack cor-
relation in the future and the continuous existence of
correlation groups. Future research should investigate



these characteristics and track their evolution.

10 ACKNOWLEDGMENTS
We would like to thank John Hardenbergh, Ben Leong, Har-
sha Madhyastha, Vyas Sekar and the anonymous referees
for their comments; the Internet Storm Center for provid-
ing us the DSHIELD data; Ed Amoroso, Martin Arlitt,
Tim Battles, Glenn Fowler, Patrick Haffner, Adam Ham-
mer, Christopher Morrow, Manuel Ortiz, Dan Sheleheda,
and Vinod Yegneswaran for their help with our project.
Also, Katti and Katabi acknowledge the support of the Na-
tional Science Foundation under NSF Career Award CNS-
0448287. The opinions and findings in this paper are those
of the authors and do not necessarily reflect the views of
NSF.

References
[1] Computer Emergency Readiness Team.
http://www.us-cert.gov/.

[2] Distributed Intrusion Detection System.
http://www.dshield.org/.

[3] E. Cooke, M. Bailey, D. Watson, F. Jahanian, and
D. McPherson. Towards understanding distributed
blackhole placement. In The 2nd Workshop on Rapid
Malcode (WORM) Fairfax, Virginia, October 29, 2004.

[4] F. Cuppens and A. Miege. Alert correlation in a
cooperative intrusion detection framework. In 2002 IEEE
Symposium on Security and Privacy.

[5] D. Curry and H. Debar. Intrusion detection message
exchange format: Extensible markup language (xml)
document type definition, 2001.

[6] F-SECURE. F-secure virus descriptions : Santy.
http://www.f-secure.com/v-descs/santy a.shtml/.

[7] B. Feinstein, G. Matthews, and J. White. The intrusion
detection exchange protocol (idxp), 2003.

[8] N. Habra, B. L. Charlier, A. Mounji, and I. Mathieu.
ASAX : Software architecture and rule- based language for
universal audit trail analysis. In ESORICS, 1992.

[9] L. T. Heberlein, B. Mukherjee, and K. N. Levitt. Internet
security monitor: An intrusion detection system for
large-scale networks. In Proceedings of the 15th National
Computer Security Conference, 1992.

[10] J. Hochberg, K. Jackson, C. Stallings, J. McClary, and
J. DuBois, D.and Ford. NADIR: An automated system for
detecting network intrusions and misuse. In Proceedings of
Computers and Security 12(1993)3, 1993.

[11] A. Hussain, J. Heidemann, and C. Papadopoulos.
COSSACK: Coordinated Suppression of Simultaneous
Attacks. In DISCEX, 2003.

[12] C. Krugel, T. Toth, and C. Kerer. Decentralized Event
Correlation for Intrusion Detection. In 4th International
Conference on Information Security and Cryptology 2001.

[13] P. Lincoln, P. Porras, and V. Shmatikov.
Privacy-Preserving Sharing and Correlation of Security
Alerts. In Usenix Security 2004, San Diego, CA.

[14] M. Locasto and et al. Collaborative Distributive Intrusion
Detection. In CU Tech Report CUCS-012-04, 2004.

[15] J. McConnell, D. Frincke, D. Tobin, J. Marconi, and
D. Polla. A framework for cooperative intrusion detection.
In NISSC, pages 361–373, 1998.

[16] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet
Quarantine: Requirements for Containing
Self-Propagating Code. In INFOCOM, 2003.

[17] D. Moore, G. M. Voelker, and S. Savage. Inferring internet
Denial-of-Service activity. In USENIX Security 2001.

[18] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and
L. Peterson. Characteristics of Internet Background
Radiation. In Proceedings of the IMC 2004.

[19] V. Paxson. Bro: a system for detecting network intruders
in real-time. Computer Networks (Amsterdam,
Netherlands: 1999), 31(23–24):2435–2463, 1999.

[20] P. A. Porras and P. G. Neumann. EMERALD: Event
monitoring enabling responses to anomalous live
disturbances. In Proc. 20th NIST-NCSC National
Information Systems Security Conference, 1997.

[21] A. Snapp and et. al. Distributed intrusion detection
system - motivation, architecture, and an early prototype.
In Proceedings of the 14th NCSC, 1991.

[22] E. Spafford and Z. D. Intrusion detection using
autonomous agents. In Computer Networks, Volume 34,
2000.

[23] S. Staniford-Chen and et. al. GrIDS – A graph-based
intrusion detection system for large networks. In 19th
National Information Systems Security Conference, 1996.

[24] B. Staniford-Chen S.; Tung and D. Schnackenberg. The
Common Intrusion Detection Framework (CIDF). In
Information Survivability Workshop, Orlando FL, 1998.

[25] The Honeynet Project. Know your Enemy: Tracking
Botnets. http://www.honeynet.org/papers/bots/.

[26] G. Vigna, S. Eckmann, and R. Kemmerer. The stat tool
suite. In In Proceedings of DISCEX, 2000.

[27] U. White, G. B.; Pooch. Cooperating security managers:
distributed intrusion detection systems. In Computers &
Security, Vol. 15, No. 5, pages 441–450, 1996.

[28] V. Yegneswaran, P. Barford, and J. Ullrich. Internet
intrusions: Global characteristics and prevalence. In In
Proceedings of ACM SIGMETRICS,, 2003.

[29] S. Zanero. Behavioral Intrusion Detection. In ISCIS 2004.

Notes
1 Moore et al. [16] have shown that it is hard to contain

epidemic worms such as Code Red using IP blacklists. In the 150
million alerts we observed in our ISP dataset logs from 40 IDS,
only 4% are caused by epidemic worms. Thus, IP blacklisting
continues to be an important tool for warding off attack.
2 The cross correlation is defined as:

rxy =

∑

i(x(i) − x̄)(y(i) − ȳ)
√
∑

i(x(i) − x̄)
2
√
∑

i(y(i) − ȳ)
2

where rxy is the cross correlation, x and y are vectors of equal
length, and x̄ and ȳ are the corresponding means.
3Message formatting and exchange protocols, though neces-

sary for IDS collaboration, are beyond the scope of this paper.
Some of the existing literature addresses these issues [7, 5, 24].


