
DEW: DNS-Enhanced Web for Faster Content Delivery

Balachander
Krishnamurthy

AT&T Labs–Research
Florham Park, NJ, USA

bala@research.att.com

Richard Liston
Georgia Tech

Atlanta, GA, USA
liston@cc.gatech.edu

Michael Rabinovich
AT&T Labs–Research

Florham Park, NJ, USA
misha@research.att.com

ABSTRACT
With a key component of latency on the Web being connec-
tion set up between clients and Web servers, several ways to
avoid connections have been explored. While the work in
recent years on Content Distribution Networks (CDNs) have
moved some content ‘closer’ to users at the cost of increasing
DNS traffic, they have not fully exploited the available unused
potential of existing protocols. We explore ways by which a
variety of Web responses can be piggybacked on DNS mes-
sages. While we evaluated our idea in the Web context, the
approach is generic and not restricted to Web responses. We
propose an architecture for HTTP piggybacking in DNS mes-
sages and carry out a detailed performance analysis based on a
trace-driven simulation study. Our architecture requires mini-
mal extensions to existing protocols, utilizing only the allowed
optional fields for these extensions. It is fully compatible and
can coexist with the current Web.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Network Archi-
tecture and Design

General Terms
Performance,Design

1. INTRODUCTION
Many researchers have explored ways to improve user-per-

ceived latency and reduce load on origin servers and the net-
work. A common theme among the various strands of work
that have turned out to be beneficial is one that allows in-
cremental deployment rather than new large scale changes to
existing user’s practices. Consequently, we seek ways to ex-
ploit inefficiencies in the current, largely stable and gener-
ally difficult to modify protocols involved in a Web download
(HTTP/1.1 is not yet a standard six years after introduction!),
while minimizing any protocol extensions and making sure
these extensions can coexist with the current practice.

A typical Web transaction (for more details, see [6], Sec-
tion 15.4.1) involves a few protocols (DNS, HTTP, UDP, TCP)
with multiple short transactions among the associated entities
(clients, proxies, servers).
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Inefficiencies in the transport layer have been largely squeez-
ed out by protocol changes at the HTTP layer (persistent con-
nections, pipelining) as well as proposals to move some HTTP
traffic from TCP to UDP [2, 13]. Latency reduction has been
advanced by standard proxy caching techniques and in some
cases via non-standard ones (such as DNS-based content dis-
tribution), or again via protocol extensions (such as compres-
sion, delta-encoding [11], and HTTP range requests). Pig-
gybacking, which dates back to pre-TCP days, has been ex-
ploited for obviating unnecessary cache validations [7] and for
sending hints [3]. Piggybacking techniques that exploit exist-
ing protocols, have low overhead, reduced deployment costs,
are easier to test and hopefully be adopted.

In this paper, we explore ways to speed up Web delivery
by piggybacking some or all of a HTTP resource in DNS re-
sponses. Most HTTP transactions are preceded by a DNS
lookup of the Web site’s server name which (unless cached)
is satisfied by authoritative DNS servers. Authoritative DNS
servers are often close, in a network sense, to the machines
whose names they serve [4]. To access a Web object, clients
often must communicate with a distant host to resolve the Web
server name, only to go back to the same location again for the
object itself. Our approach attempts to reduce the frequency of
such repeated communication, and thus reduce the latency of
Web accesses. It will therefore be especially beneficial for en-
vironments with long message latency, such as dial-up clients,
clients connected by satellite links and clients accessing very
remote Web sites.

We examine different scenarios where useful information
can be piggybacked in the DNS message exchange that comes
before regular responses. It is not necessary for the entire
HTTP response to be piggybacked. With some simple adjust-
ments, we can alter the piggybacked response (e.g., compress
it), or send semantically significant portions (an initial por-
tion of predefined size or differences between versions of a
resource, if a previous version is cached).

A DNS trace study [5] done at MIT and the Korea Advanced
Institute of Science and Technology examined the failure rates
as well as overall performance and reported on usefulness of
caching. A recent example of exploiting existing DNS servers
(although for an entirely different application, that of measur-
ing latency between arbitrary Internet hosts) and avoiding in-
stallation of new measurement infrastructure is the King sys-
tem [4].

Although in this paper we focus on piggybacking HTTP
on DNS, the idea is more general and could be used in any



context where a transaction involves a sequence of protocols.
For example, in some peer-to-peer systems, a file download
is preceded by a directory query to find a relevant peer. Fur-
thermore, while many P2P systems currently use hardwired
IP addresses, short peer-to-peer query responses can be piggy-
backed in DNS responses, when a DNS query is required in
that context.

2. BACKGROUND
Web interaction today involves the following mechanisms.

Every HTTP client (‘client’) is configured to use a DNS server
(‘local DNS’ or LDNS) to resolve URL hostnames into their
IP addresses. Typically a group of clients (usually in the same
client location) share the same LDNS. LDNSs in turn are con-
figured to use well-known root DNS servers, which keep a
database of the DNS servers that maintain hostname-to-IP-
address mappings for given domains (authoritative DNS servers
referred to here as remote DNS or RDNS). A Web interaction
typically starts with the client sending a DNS query to LDNS,
which resolves it from the appropriate RDNS (first obtaining
the RDNS identity from a root server) and forwards the re-
sponse to the client. The client then opens a TCP connection
to the Web server and downloads the page using HTTP pro-
tocol. The DNS interactions occur over connectionless UDP
and involve simple exchange of request/response datagrams.

DNS makes extensive use of caching at all levels. A client
caches DNS responses to avoid the overhead of DNS queries
when accessing multiple URLS from the same Web site. An
LDNS caches responses to avoid going to RDNS when an-
other client from the LDNS’s group previously already re-
solved the same hostname. Clients sharing the same LDNS
share the LDNS’s cache of DNS responses. To keep cached
responses from becoming stale, RDNS servers assign time-
to-live (TTL) to the responses, indicating validity duration of
cached responses.

3. DNS-ENHANCED WEB
Here we describe our proposal for DEW—DNS-Enhanced

Web. Before a Web client can send the HTTP request, it often
needs to resolve the host name of a Web server. The client’s
resolver is modified to piggyback the HTTP request on the un-
used portion of its DNS request to its DNS server. DNS servers
(both local and authoritative) extract piggybacked HTTP re-
quests and may choose to piggyback HTTP responses or parts
of them on the DNS responses. We consider strict piggyback-
ing, where the piggybacked information fits entirely into the
unused portion of the DNS response, and extended piggyback-
ing where the DNS response may include up to two additional
datagrams. Limiting the size of extended piggybacking allows
DEW to leave congestion control (essential in large data trans-
fers) to TCP mechanisms.1 We refer to the maximum amount
of piggybacked HTTP data as size threshold. Our idea leaves
open different design choices. We leave them for an extended
version of this paper and concentrate here on the architecture
shown in Figure 1.
1TCP starts a transfer of HTTP responses with congestion
window of two segments. In this paper, we study cases where
DEW’s transfer is more conservative (strict piggybacking),
equivalent (one extra datagram) and slightly more aggressive
(two extra datagrams) than TCP’s.
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Figure 1: DEW architecture that combines DNS servers
and HTTP caches.

3.1 The Architecture
A high-level architecture of DEW is shown in Figure 1 (root

DNS servers are not shown, they are not modified in DEW).
DEW-enabled DNS servers add an HTTP cache to their nor-
mal DNS cache. When the LDNS receives a query with pig-
gybacked HTTP request, LDNS can respond locally if it has
both DNS and HTTP responses in its respective caches. If
neither response is cached, LDNS forwards the entire query
to the authoritative DNS for the hostname provided the latter
is DEW-capable. The remote DNS server contacts the origin
server, with which it may maintain a persistent TCP connec-
tion. If the origin server decides that it is appropriate to do
so (based on, e.g., whether the HTTP request is idempotent
in case of potential loss of DNS response), it sends the de-
sired object, or a part thereof, to the RDNS server. The RDNS
server piggybacks this HTTP response in its DNS reply to the
LDNS, which in turn forwards the reply to the HTTP client.
The RDNS can also cache the HTTP response in its HTTP
cache for future use. If the HTTP client receives a DNS re-
sponse that includes the requested HTTP object, the client can
immediately use it. If the DNS response contains just the IP
address of the host (or only a portion of the HTTP response),
the client will obtain the (remaining portion of the) object from
the HTTP server using a HTTP Range request.

When the LDNS can satisfy the hostname query from its
DNS cache but does not have the requested HTTP object in
its HTTP cache, the LDNS can fetch the object from the Web
server and piggyback it on its DNS response to the client. Its
HTTP cache is therefore a standard client HTTP proxy, but
it receives requests from LDNS with the hostnames in the re-
quests already resolved. This cache must implement all Web
proxy features such as cacheability and cache validation rules.
Although piggybacking in this case is limited to the interaction
between the client and LDNS, it is important especially for
dial-up users because the communication between their HTTP
clients and LDNSs occur over dial-up connections with typi-
cal latencies of around 200ms. Considering that a document
download often involves HTTP interaction with multiple Web
sites (e.g., the container HTML page from the origin site, the
site’s embedded images from a CDN, and banner ads from ad-
vertising sites), the latency overhead for communication with
LDNS and the TCP set-up can be significant. If responses
from various sites can be piggybacked, the benefit accumu-
lates. However, parallel downloads will lower the probability
of cumulative benefit.
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Figure 2: Message exchange in today’s Web (DNS response
cached by LDNS).

DEW could be especially useful in existing deployed Con-
tent Distribution Network architectures. CDNs, such as AT&T’s
ICDS or Akamai, already use DNS to locate CDN mirrors
(presumed to be) closer to the browser client’s LDNS. Since
most CDNs still deliver small static images that have a typical
size distribution in the few hundreds of bytes, they make ex-
cellent candidates for DEW. CDNs already run their own DNS
hierarchy and have access/control over delivery of the static
image resources. They typically return DNS responses with
low TTLs and do not maintain persistent HTTP connections
with the clients. CDNs are good candidates to accept piggy-
backed DNS queries and actually reduce latency for users in
fetching these objects by obviating the HTTP connection.

3.2 Use Cases
DEW uses extensions allowed in the existing DNS protocol

specification and DEW-enabled components (HTTP clients,
LDNS and RDNS servers, and Web servers) can coexist with
their current counterparts. Section 6.1 provides details on the
DEW protocol and on fitting DEW into DNS. Here, we de-
scribe various scenarios in DEW and compare their timing
properties with the current Web.

Consider a client that fetches a page with two embedded im-
ages, image1 and image2. In the time diagrams, we assume a
dial-up client, with the RTT between the client and other hosts
being three times the RTT between well-connected hosts on
the Internet. Let

���
and
���

be RTTs between the client and its
ISP and between the ISP and the Internet, respectively. The
RTT between the client and the Internet is

���������
. Let � and	

be the size of the container page and embedded content, and
�� � �
	 be the size of the entire document. Let the time to
download a file of size � over TCP be ������� , which is the time
interval between the first and the last byte of this content arriv-
ing at the client (that is, excluding connection establishment).
Let ������� be time for a bandwidth-limited download of such
file over UDP.

When the client has the IP address of the host in its local
DNS cache, it fetches the document from the Web server over
HTTP, both in today’s WEB and in DEW. Such a request is
termed non-participant as no piggybacking is done by DEW.

Now assume that host name needs to be resolved. We ana-
lyze the case when there is no previously established persistent
connection between the client and the Web server. This is the
most likely case because if the client must resolve the host
name, then either this is its first access to this site, in which
case the client cannot have an existing connection, or the pre-
vious DNS resolution timed out, in which case it is most likely
that the persistent connection timed out also. The analysis of
the cases where there is a persistent connection is very similar.

Figure 2 shows the time diagram of the messages involved
in today’s Web interaction when the local DNS has the re-
quested host name in its cache. The silent time for this in-
teraction is ��� ��������� � ������� � � and the display time is
between � � � ��� 
 � and � � � � ����� ��� � � �!� 
 � depending on
the degree of the overlap between the delivery of the container
page and the requests for embedded content. The case when
LDNS does not cache the requested host name adds

� �
to all

expressions.
With the architecture of Figure 1 and assumption that a client

sent a DNS request with HTTP request to its LDNS raises fol-
lowing cases:

" The LDNS has the host name in its DNS cache and the
container page in its HTTP cache, and the page is be-
low size threshold. The time diagram for this case is
shown in Figure 3a. Compared to Figure 2, we observe
the reduction in both the display time, which is the total
delay before the user sees the entire document with all
the images, and especially the silent time, which is the
delay before the browser starts showing some informa-
tion to the user [1]. This request is called a full cache
hit. The silent time here is

���
and display time is either���#�$� � ���%�&��� � � �'���(� � ��� 	 � if there is embedded

content or
���%� �'���(� �)���*� ��� 
 � otherwise.2 For a

more vivid comparison with current Web, we can further
simplify the display time expression for the case with
embedded image by noting that �'���(� � ��� 	 �,+-�!� 
 � .
Then, the conservative estimate for display time in this
case becomes

���*�-� � ���*�.��� � � �!� 
 � .
" The LDNS has the host name in its DNS cache but the

container page is not in its HTTP cache. The latter
now issues the HTTP Range request to the Web server
(Figure 3b). The Range request is needed to limit the
transfer to a initial portion of the page that is below the
size threshold. Still assuming for now that the page is
below the threshold, the server responds with the en-
tire object, which the LDNS caches in its HTTP cache
and forwards to the client in the DEW response. The
effect on response time here depends on the environ-
ment. For a U.S. dial-up client accessing a domestic
Web site, there will be a reduction in silent time be-
cause DEW replaces TCP handshake over slow dial-
up link (RTT in the order of 200ms) with TCP hand-
shake over faster Internet link (cross-country RTT that
are roughly a third of dial-up times). If there were no
embedded images this would translate into similar sav-

2This and similar expressions later in this section are a slightly
conservative estimate since the display time could be less due
to a possible partial overlap of �����(� and ��� 	 � . Any difference
would be small however because � is small in this case.
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Figure 3: Message exchanges in DEW.

Category Explanation
Non-DEW-participant Client knows Web site’s IP address, no DNS request sent
DEW participant Client does not know Web site’s IP address
Full DEW participant HTTP response to client is fully piggybacked on DNS response
Partial DEW participant Initial portion of HTTP response is piggybacked followed by a Range HTTP request.
Full cache hit Full participant satisfied from LDNS’s cache.
Partial cache hit Partial participant satisfied from LDNS’s cache.
Full HTTP request Full participant such that LDNS’s cache contains DNS response but not HTTP response.
Partial HTTP request Partial participant such that LDNS’s cache contains DNS response but not HTTP response.
Full DEW request Full participant such that LDNS’s cache does not contain DNS response
Partial DEW request Partial participant such that LDNS’s cache does not contain DNS response

Table 1: Summary of request categories.

ings in display time. With embedded images, depend-
ing on the environment, DEW might increase the dis-
play time in this case because it trades one RTT between
client and the Internet for two RTTs between the ISP and
the Internet.3 This request, called a full HTTP request,
has a silent time of ��/ �������0�1��� ; display time of
� / �2� � � � �3� � � � �'���(� � �!� 	 � (or, conservatively,
��/ �
� � �����4��� � � �!� 
 � ) if there is embedded content or
��/ � �����(� � ��/ � ��� 
 � otherwise. We assume that
the link to the client is the bottleneck thus determining
the container page’s download time.

" The LDNS does not have the host name in its DNS
cache. It forwards the DEW request to RDNS, which re-
sponds with the message containing both the requested
IP address and the HTTP page.4 Similar to the cache
hit case, this case (named a full DEW request) results in

3Because this case assumes a small container page, there
would be little overlap between the download of the container
page and requests for embedded content, so the Web interac-
tion would involve at least three RTTs between the client and
the Internet as in Figure 2.
4RDNS would obtain the HTTP page either from its HTTP
cache or from the origin HTTP server. In the latter case, we
assume that RDNS and the HTTP server are connected with a

the reduction of silent and display time, the latter due to
better pipelining. The expressions for the silent and dis-
play times are the same as in the case of the full cache
hits with added

���
for RDNS query in both expressions.

" The page is above the size threshold. When the LDNS
has the host name in its DNS cache but the container
page is not in its HTTP cache, LDNS does not know
the page size. So, its HTTP cache issues the Range re-
quest for 5 initial bytes, which allows LDNS to limit
the response size without knowing the page size. When
the Web site returns the initial portion of the container
page, it is cached for the future use and returned to the
client piggybacked on the DNS response. This allows
the browser to immediately start displaying the received
portion of the data, reducing the silent time.

The browser also issues HTTP Range request for the re-
maining part of the container page. Unlike in the current
Web, if embedded objects happen to be specified in the
initial portion of the container page already received, the
browser can pipeline the requests for these objects right

high-bandwidth low-latency link because they usually belong
to the same enterprise. Thus, we do not distinguish these two
cases in our analysis.



Web DEW
full cache hit full HTTP req partial HTTP req partial cache hit

Silent 6 ���*�-�1��� ��� ���*�-�1��� ���%�&�1��� ���
Display 6 ���*�$�7���8� �!� 
 � 6 ���9�-�1���:� �!� 
 � 6 ���%�.;<���=� �!� 
 � 6 ���9�.;<���:� �!� 
 � 6 ���*�-�1���=� ��� 
 �

to or or to to;>���*� 6 ���8� �!� 
 � ���*� �'� 
 � ���*�-�1���=� ��� 
 � ;>���9�-?1���:� �!� 
 � ;<���*� 6 ���=� ��� 
 �
Table 2: Download times of Web and DEW with LDNS caching the DNS response

Web DEW
full DEW req partial DEW req

Silent 6 � � � 6 � � � � �@� � � � �@� �
Display 6 � � � 6 � � � �!� 
 � 6 � � � 6 � � � �!� 
 � 6 � � � 6 � � � �!� 
 �

to or to;>���9�.;<���:� �!� 
 � ���9�A���=� ��� 
 � ;>���9�.;<���:� �!� 
 �
Table 3: Download times of Web and DEW when LDNS does not have the DNS response (the estimates for DEW are
conservative).

after the HTTP Range request for the remainder of the
container page (see Figure 3c). The effect of DEW on
the display time in this case is unclear because improved
pipelining is offset by an extra TCP handshake over the
fast link. We call client requests processed according to
this scenario as partial-page HTTP requests. The silent
time here is �B6 �C�������1��� . The display time is be-
tween ��6 �&� � ���D�A��� � � �'�E5F� � �!���3GH5 �&	 � and
�B6 � 6*� ���D�H� � � � �'�E5F� � �!���$GH5 �@	 � depending
on whether the embedded content is referenced in the
beginning or the end of the container page. The oppor-
tunity for pipelining HTTP requests is higher here than
in the current Web. For example, Figure 3c shows a sce-
nario when all HTTP requests from the client to the Web
server are pipelined, while today the request for the con-
tainer page inherently precedes the pipelining. We can
conservatively replace the last two terms in both formu-
las with ��� 
 � .

" The other two cases, partial-page cache hits and partial-
page DEW requests, are analogous to their full-page coun-
terparts. The initial portion of the container page in the
partial-page cache hit case is satisfied from LDNS, re-
sulting in significant reduction in silent times. Similar
to partial-page HTTP request, partial-page cache hit im-
proves pipelining of the remaining portion of the page
and embedded images, but this time without extra TCP
handshake between LDNS and the Web server, reduc-
ing the display time. The silent time here is � ;I����� .
Recalling that ���E5F� � �!���0G-5 �J	 �K+ � �!� 
 � , the
conservative estimate for the display time is between
� ;��'� � � � �L� � � � �!� 
 � and � ;M� 6*� � � �N� � � � �!� 
 � de-
pending on whether the embedded content is referenced
in the beginning or the end of the container page.

The partial-page DEW request occurs when LDNS pig-
gybacks the HTTP request over its DNS request to RDNS,
and the RDNS returns only the initial portion of the page
because the page exceeds the size threshold. Similar
to full-page DEW requests, this scenario reduces silent
time, and depending on where the embedded images are
specified, the display time due to better pipelining. The

RDNS query adds
���

to the expressions for the silent
and display times for the full-page DEW request case.

We summarize request categories in DEW in Table 1 and
the expressions for silent and display times for different cate-
gories in Tables 2 and 3. We study how often these scenarios
occur in real traces in Section 5. In many of the above scenar-
ios, DEW reduces the total number of packets exchanged by
eliminating some TCP handshake and acknowledgment mes-
sages. Quantifying the effective reduction in network loads is
beyond the scope of this paper.

4. EXPERIMENT METHODOLOGY
The DEW architecture will have different effects from the

vantage points of the client, the proxy (if any), and the con-
tent provider. We used trace-driven simulations to evaluate the
effect of the system from these three perspectives. Given the
time analysis of individual scenarios from Section 3.2, we fo-
cus on understanding how often these scenarios occur.
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Figure 4: CDF of object sizes in the logs.

Table 4 shows the traces used in our study. Larmancom is
a trace merged from three proxy logs at three sites of a large
manufacturing company recorded over the course of a week
in July 2001. This trace contains distinct client IP addresses,



Name Date Total Requests Mean/Median Simulation (section)
Object Size (bytes)

Larmancom July 8-14, 2001 216,251,781 7610/965 client ( 5.1), proxy ( 5.2)
NLANR October 21-27, 2002 11,815,289 12050/902 proxy ( 5.2)
Largesite August 1-7, 2001 51,747,434 3680/792 content provider ( 5.3)

Table 4: Logs used for simulations.

anonymized such that class locality is preserved, allowing us
to use it for studying both client and proxy perspectives. The
NLANR trace is taken from a proxy in the NLANR cache hi-
erarchy [14]. The client IP addresses in this trace are sanitized;
hence we used this trace only for the proxy perspective evalua-
tion. For the content provider evaluation we used a trace from
a large commercial Web site.

One important aspect determining the request category is
the size of the response. Table 4 lists mean and median re-
sponses sizes in our traces, and Figure 4 shows the CDFs of
the response sizes. The size distributions all have a similar
shape and confirm previous studies showing a prevalence of
small objects. With a median size of less than 1K, a majority
of the objects are candidates for strict piggybacking.

The effectiveness of DEW depends on the following key
factors: size of objects that can be returned in a DEW re-
sponse, TTLs of objects (both DNS responses and HTTP ob-
jects) in the DEW cache, and grouping of clients into clusters
that share the same LDNS server. In our simulations we have
direct control over the first two factors. We ran the simulations
using different combinations of values for these factors. To re-
duce the number of combinations, we used the same value for
TTLs of both DNS and HTTP responses. We also simulated
the effect of compressing objects. We ran our simulations as-
suming that textual objects are compressed by a specified ratio
(since compression increases the effectiveness of DEW, we as-
sumed conservatively that only textual objects are compress-
ible). We inferred textual objects by either MIME type (when
available) or by the file name extension from the object’s URL
(e.g., URLs ending with “.html” or “.asp” were assumed to be
textual objects). We chose a compression ratio by measuring
it on homepages of top 148 Web sites as discussed in the next
section.

To evaluate the deployment of DEW at the proxy we simu-
lated a DEW-capable LDNS server that is used solely by the
proxy. In the client- and content provider-based evaluations
we simulated deployment of DEW-capable LDNS servers at
each client location. The client evaluation assumes no proxy
participation. The content provider evaluation is agnostic to
proxy participation since clients in the logs may represent end-
users as well as proxies. In the last two evaluations, we needed
to group individual clients into clusters sharing the same LDNS
server.

For the client-based evaluation we do not have specific in-
formation about the sharing of LDNS servers by the clients
in the logs, and we assume that clients are grouped by the
most significant three octets of their IP address. This impre-
cise grouping can affect the breakdown of DEW participants
into categories5 but does not change the overall percentage of

5Because the imprecision is likely on the side of overestima-

DEW participants.
For the content-provider simulation, our trace is from the

same site and the same time period that was used in a previ-
ous study to assign Web clients to their LDNS servers [8].
Thus, we have precise client-LDNS maps for content-provider
evaluation. We used these maps to precisely simulate sharing
of LDNS servers by clients and to maintain the state of the
LDNS servers.

During the simulation, each request in the trace is examined
according to the choice of values for the current simulation run
and the state of the DEW-capable LDNS cache. The request
is then categorized according to the use scenarios defined in
Section 3.2. The output of each simulation is a count of the
number of requests in each category. We do not model packet
loss. As explained later in Section 6, DEW’s behavior in high-
loss environments should not be worse than the current Web.

5. RESULTS
We now present the results of evaluating the impact of the

system from the perspectives of clients without a proxy, a client
proxy, and a content provider, which is agnostic as to whether
or not its clients represent proxies or end-users. Our main find-
ings are:

" There is a reasonable opportunity for piggybacking of
HTTP on DNS messages. While this opportunity drops
for higher TTLs, it remained significant (20%) in the
content provider case even for TTL of one day.

" Most of the DEW benefits come from piggybacking HTTP
on DNS responses that come all the way from RDNS to
LDNS to clients. Contributions from HTTP caching and
downloading functionality of DEW-enabled LDNS was
low.

" DEW Participation expectedly goes down in the pres-
ence of proxies due to reuse of cached DNS resolutions
but there is still roughly 20% participation in the Lar-
mancom trace and 40% in the NLANR trace for DNS
TTL of a minute.

" Compression benefits were inconclusive: it increased a
fraction of full DEW participants in the content provider
and NLANR traces, but did not have much effect in the
Larmancom trace, for both client and proxy perspec-
tives.

tion of LDNS sharing, it may increase the percentage of par-
ticipants categorized in Section 3.2 as cache hits and HTTP
requests at the expense of DEW requests.
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(b) Container pages.

Figure 5: Percentage of DEW participants (Larmancom
logs).

5.1 Client
We used the Larmancom logs to to evaluate the system from

the client’s viewpoint. We ran the simulations grouping clients
as described in Section 4 using the common TTLs of 15, 60,
300 and 86400 seconds (1 day), as well as 0 seconds as a
boundary case. Some clients do not obey small TTLs in DNS
responses and cache them anyway for some period of time
(up to a few minutes). For these clients, DEW participation
would freeze at the level corresponding to this “imposed TTL”
for any smaller TTL returned by the RDNS. We considered
size thresholds of 1180, 2660, 4140, which approximate re-
sponses taking one, two, and three UDP packets. We assume
a 1480-byte datagram and deduct 300 bytes from the total size
for HTTP headers and the DNS response itself. Although the
DNS specification limits DNS responses to 512 bytes [10],
this limitation was specified before MTU discovery has made
1480-byte packets ubiquitous and consequently led to the Pro-
posed Standard (RFC 2671 [16]) that specifies a method of
increasing the DNS response size. A DEW-capable server
can just assume that, since it is receiving a DEW request, the
LDNS can handle responses of a size greater than 512 bytes.

Figure 5a shows the total percentage of DEW participants
and the percentage of full DEW participants (those completely
fitting into the size threshold) for each combination of values.
Participants include requests categorized as DEW Requests,
HTTP Requests and Cache Hits.

The boundary case of zero TTL indicates the maximum pos-
sible percentage of requests that are candidates for DEW par-
ticipation. A request is not a DEW candidate if its HTTP re-
quest method is other than GET or HEAD, or if it does not
involve a DNS lookup (hostname portion of the URL is a raw
IP address). Approximately 97% of the requests are potential
DEW participants. 2% of the requests have IP addresses in the
URLs and 1% employ non-GET or HEAD request methods.

With a higher TTL, clients use cached DNS resolutions for
requests that revisit the same Web server; as explained in Sec-
tion 3.2, these requests become non-DEW participants. The
higher the TTL the longer a client can use cached DNS re-
sponses, and the fewer requests are potential DEW requests.
Each of the participant curves decreases as TTL increases. The
percentages of total DEW participants are 97%, 21%, 15%,
10% and 7%, respectively. This quick dropoff is due to HTTP

traffic pattern: loading a Web page is typically followed by a
burst of requests to the same server (or a limited number of
servers) for embedded objects (images, scripts, etc.). These
subsequent requests are “masked” because the client already
has the IP address of the destination server and will not con-
tact the LDNS for the subsequent requests until the DNS TTL
expires. Low DNS TTLs are common for objects delivered by
CDNs. Clients are therefore expected to experience a greater
performance enhancement from DEW for CDN-delivered ob-
jects.

The initial requests for container pages (i.e., those that em-
bed images and other objects) are of particular importance
because their silent time determines the silent time for the
entire Web document. As our time analysis of Section 3.2
showed, DEW participation of a container page also improves
display time for the entire document in most cases, due to bet-
ter pipelining. We thus examined the percentage of DEW par-
ticipants among requests for container pages only. Figure 5b
shows the proportion of DEW participants and full DEW par-
ticipants among container pages. Comparing Figures 5a and
5b we see that higher percentage of container pages benefit
from the DEW architecture. For example, for TTL of 300 sec-
onds, approximately 20% of requests to container pages are
full or partial DEW participants, and 11% are full participants
with strict piggybacking (i.e., they can be piggybacked in a
single DNS response packet).

To gain insight into the behavior of Figure 5b, we inspected
the breakdown of the categories of DEW participants from
container pages. We normalized each of the points of Fig-
ure 5b to 100% and examined the contribution of the cate-
gory to the normalized total. For example, in Figure 5b, for
a TTL of 15 seconds, the “all participants” curve shows ap-
proximately 40% of requests being either partial or full partic-
ipants. We found that nearly 100% of these requests are DEW
requests. This was true for all TTLs up to 300 seconds. Simi-
larly, nearly all full participants are DEW requests for any size
threshold. Overall, we found that the DEW Requests category
far outweighs the HTTP requests and Cache Hits. Even with
a TTL of one day, the proportion of cache hits is only around
10%. This suggests that requests for container pages in con-
junction with DNS requests exhibit only insignificant sharing
among clients belonging to the same client site. Thus, most
benefits come from the piggybacking capability and not from
the caching and HTTP functionality of the LDNS server.

Most DEW benefits occur when a request is a full partici-
pant. Figure 5 shows that full participants constitute at least
half, and often a majority, of participants for all size thresh-
olds. We investigated the possibility of further increasing the
proportion of full participants by combining DEW with the
practice of compressing objects at the content provider. We
downloaded the home page of 148 popular Web pages [9]
and compressed them via gzip. The mean and median com-
pression ratios were 4.6:1 and 4.4:1, respectively. Using a
conservative compression ratio of 4:1, we simulated the com-
pression of all objects deemed compressible as per the crite-
rion mentioned in Section 4. These results are shown in Fig-
ure 6a. There is very little change between Figure 5a and Fig-
ure 6a. For example, with a TTL of 15 seconds, 4:1 compres-
sion raises the percentages of full participants from 21%, 14%,
13% and 11% to 21%, 17%, 15% and 12%, respectively. This
result is not surprising given the small gap between full and
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(b) Container pages.

Figure 6: Percentage of DEW participants, 4:1 compres-
sion (Larmancom logs).

total participants on Figure 5.
Although compression provided little benefit to DEW when

considering all requests—container pages and embedded ob-
jects—compression proved more beneficial when considering
only container pages. As shown in Figure 6b, a noticeably
higher percentage become full participants, particularly for lower
TTLs. This suggests that container pages for domain names
that generally have lower TTLs, such as those delivered by
CDNs, will receive an added benefit by compressing container
pages.

5.2 Proxy
To evaluate the effects of DEW from a client proxy perspec-

tive, we simulated an environment where many clients share
a single proxy. We assume an explicit proxy deployment (see
[12], Chapter 8) where all clients send all HTTP requests to the
proxy with unresolved host names, and only the proxy inter-
acts with the LDNS. We do not consider transparent proxy de-
ployment because clients in this case perform their own DNS
lookups and hence the DEW effects would be similar to those
of Section 5.1.

We use the Larmancom and NLANR traces for this experi-
ment, assuming that all requests from the trace are processed
by a single proxy, simulate the state of a DEW-capable LDNS
used by the proxy, and categorize requests accordingly. Merg-
ing three proxy traces into one makes our results on DEW par-
ticipation conservative because this increases sharing of cached
DNS responses among a greater number of clients. We use the
same set of TTLs and thresholds as we did for the client eval-
uation as the simulation parameters.

Since the proxy is the only client of its LDNS in the simula-
tion, the DNS cache at the proxy and at the LDNS are exactly
synchronized. The resolution for a domain name expires at
the same time for both. In this configuration, since we as-
sume that both the DNS response and the HTTP object have
the same TTL, cache hit or HTTP request categories of DEW
participants can never occur. Indeed, an HTTP request occurs
when requested host name is in LDNS’s DNS cache but the
object is not in its HTTP cache. However, proxy in this case
will also have this host name in its DNS cache and will send
the request directly to the Web server by HTTP. A cache hit
occurs when LDNS caches both the requested host name and
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Figure 7: Percentage of DEW participants for container
pages at a proxy.

the object. The proxy in this case will also have a valid host
name in its DNS cache and will interact with the Web server
directly. Thus, in the proxy simulations, the only possible par-
ticipants are DEW requests.

In the previous section we argued that reducing the delay
for delivery of container pages provides the greatest benefit for
clients. Therefore, for brevity, in this section and the next we
examine the effect of the proxy-DEW configuration only for
container pages, and also present results only without com-
pression for Larmancom and with compression for NLANR.
Figure 7a shows the fraction of DEW participants among re-
quests for container pages in the Larmancom trace. Compar-
ing to Figure 5b, we see fewer DEW participants, which is
understandable because the proxy reuses locally cached DNS
resolutions across all requests while clients can only reuse
their own DNS resolutions. What is surprising is that for mod-
erate TTLs the reduction is quite modest: for TTL of 60s, 18%
of requests for container pages are still DEW participants, and
9% enjoy strict piggybacking. However, DEW participants all
but disappear for TTL of one day.

Proxy results for the NLANR logs using 4:1 compression
are shown in Figure 7b. These results are similar to those for
the Larmancom logs, but show much higher percentages of
DEW participants. For TTL of 60s, the participants approach
40% of all container page requests, with 20% fitting into a
single packet for strict piggybacking. The numbers remain
significant (around 20%) for TTL of 300s. While we could
not use NLANR traces for studying the no-proxy environment
because of scrambled client IP addresses, the number of par-
ticipants in that case would be higher yet, as explained before.

5.3 Content Provider
Finally, we consider DEW performance from the point of

view of the content provider. One of the major goals of the
content provider is to provide the best possible performance
to its clients. The simulation is similar to that of Section 5.1
except we use the Largesite logs and group clients around a
shared LDNS server using precise client-LDNS maps as de-
scribed in Section 4.

Again, in this simulation we focus solely on results for con-
tainer pages, which were responsible for approximately 4%
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Figure 8: Percentage of DEW participants for container
pages at server (Largesite logs).
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of the requests in the Largesite logs. The results, shown in
Figure 8a, are very different from those of the previous ex-
periments. First, the total number of DEW participants is sig-
nificantly higher than in the previous experiments. Even with
TTL of one day, when the greatest percentage of requests are
masked from DEW at the LDNS server, 25% percent of con-
tainer page requests participate. For TTL of 300s, a value more
likely with a CDN-delivered Web site, the percentage of par-
ticipants increases to over 60%.

Second, full participants represent a significantly smaller
portion of all the participants. Furthermore, the number of full
participants for different size thresholds are clustered together.
To understand this result, we examined the CDF of sizes of
requests for container pages in the Largesite logs, shown in
Figure 9. This figure shows that relatively few – less than a
third – of the container pages served by this particular server
are below even the largest threshold we consider. Moreover,
most of these pages are actually below the lowest threshold of
one packet: the percentage fitting under the threshold grows
only from 30 to 33% as the threshold increases from one to
three packets.

However, considerably higher percentages of container pages—
around 19%, 38%, and 50%—fall within these thresholds when
a 4:1 compression ratio can be employed. The results of our
simulations using 4:1 compression for the container pages are
shown in Figure 8b. We find that for the Largesite logs, com-
pression greatly increases the number of full DEW partici-
pants. Since full participants achieve the greatest benefits from

DEW, we conclude that compression would be highly benefi-
cial for this site.

6. ISSUES
In this section we discuss issues related to the deployment

of a DEW system.

6.1 Implementation
Our goal is to use the existing protocols with minimal changes

in such a way that DEW can be incrementally deployed. We
achieve this in the following manner:

" The HTTP request can be embedded into the DNS re-
quest by using the OPCODE=Query in the DNS request
header. The client would set the QDCOUNT to reflect
the number entries in the query section, one of which is a
new type of query, QTYPE=HTTP. The complete HTTP
request header would then be embedded in the QNAME
field. DNS servers that do not understand the HTTP
QTYPE ignore this portion of the query and respond to
the portion of the query that is understood. The client
receives a normal response to the DEW query and pro-
ceed in a non-DEW fashion. This is used by the client
when resolving a host name from its LDNS, and by the
LDNS when sending requests to the remote DNS.

" When an LDNS server issues an HTTP request, it must
indicate to the Web server that the response size should
be below the size threshold and identify itself via the
User-Agent request header that it is DEW-enabled. The
LDNS server uses the Range request mechanism but is
not aware of the precise size of the response header (al-
though it is typically less than 200 bytes). The DEW-
aware Web server would subtract the response header
size from the Range limit specified and send the re-
sponse that fits precisely into the piggybacked limit. Re-
sponses from DEW-unaware Web servers might slightly
exceed this limit, causing the LDNS to discard the extra
bytes.

" The client must know how many bytes are required to
make up a received object. This is accomplished at the
client by examining the Content-Lengthfield of the
response header. Note that if the Content-Length
field is not present, the client can use the N- option in
Range requests (e.g., Range:1000-) which will re-
quest all but the first N bytes.

" When a DNS response contains NS records referring the
requester to other authoritative nameservers, the addi-
tional info section of the response carries DEW resource
records (RRs). These records indicate which nameservers
are DEW-capable. This is primarily intended to avoid
unnecessary piggybacking of HTTP requests to DEW-
incapable RDNS servers.

6.2 Packet Loss
Since DEW responses are piggybacked on DNS responses

they are subject to packet loss. When the complete response
can be contained in a single packet, loss of this packet results
in no worse performance than it would without DEW; receipt
of the DNS response is required before the data transfer can



take place. When the piggybacked response contains more
than one packet, the DNS response in the first packet is still
sufficient for obtaining the rest of the content via a normal
HTTP Range request to the Web server. Consequently, the
LDNS handles a loss of a subsequent DEW response packet
from RDNS by sending to the client a DEW response contain-
ing just the contiguous portion of HTTP data that was success-
fully received. The client handles packet loss by simply issu-
ing the appropriate HTTP Range request to the Web server,
using the N- option discussed above if necessary.

The remaining issue is how to decide when a loss occurred.
Since there is no acknowledgment of data receipt in DEW,
timeouts are the only option for loss detection. The time-
out, however, can be quite short since the response packets are
expected to be sent in an immediate burst, and should arrive
within a very small time window at the client after the initial
response packet. (Note that this timeout is different from the
timeout in the DNS protocol that concerns retransmissions of
the DNS requests.) Furthermore, a host (either an HTTP client
communicating with its LDNS or the LDNS communicating
with the RDNS) can avoid frequent timeouts during high-loss
periods by specifying the size threshold of one packet in its
DEW requests.

7. CONCLUSION
We proposed and evaluated a method to improve efficiency

of Web browsing by piggybacking HTTP interactions on DNS
responses. Such piggybacking promises improved responsive-
ness of Web browsing (our focus in this paper) as well as re-
duced network traffic due to fewer TCP control messages. We
designed our scheme, called DEW for DNS-enhanced Web,
conservatively with the goals of (a) limiting piggybacking only
to existing DNS messages generated by the current Web any-
way, (b) using only allowed optional fields in DNS and HTTP
protocols for our protocol extensions, (c) allowing coexistence
with current Web including compatibility with Network Ad-
dress Translation (NAT [15]) and hence incremental deploy-
ment of DEW, (d) being non-intrusive in terms of Internet con-
gestion control, and (e) coping with the best-effort nature of
DNS messages.

We evaluated the frequency with which the opportunity for
piggybacking arises in several environments: when clients ac-
cess the Web without a proxy, when a proxy aggregates ac-
cesses from a large number of clients, and from the point of
view of a large Web content provider. We found that, overall,
DNS messages offer reasonable opportunity for HTTP piggy-
backing. Not surprisingly, this opportunity decreases with in-
creased time-to-live of cached DNS responses, so DEW should
be especially useful for content delivered through content de-
livery networks because they use very short TTLs. But even
with TTL of a full day, when our proxy traces exhibited small
DEW benefits, our content provider trace showed that 25% of
full-document (container page plus embedded objects) down-
loads would still benefit from DEW. Furthermore, even the
proxy evaluation, which we expected to show very small op-
portunity for piggybacking due to extensive DNS caching at
the proxy, showed respectable piggybacking frequency for NLANR
trace (over 20% of full-document downloads with TTL of 5
minutes).

Another interesting observation is that most of the DEW

benefits come from piggybacking HTTP all the way from au-
thoritative DNS servers to client DNS servers to HTTP clients,
rather than from delivering piggybacked HTTP content cached
by client DNS or obtained by client DNS from the Web over
HTTP. Thus, most DEW benefits can be had with a simplified
DEW architecture where client DNS servers have no added
HTTP caching and retrieval functionality.

Our future work on the DEW project includes investigation
of DEW benefits on CDN traces and on traces from more con-
tent providers. Studying CDN traces would be especially in-
teresting because we expect DEW to be most useful for CDN-
delivered content. We would also like to quantify DEW’s ef-
fect on network traffic reduction and to prototype DEW to be
able to directly evaluate its improvements in Web browsing
responsiveness.
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