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Abstract

In some contexts it may beusdul to predict the latencyfor
short TCP transfers For example, a Web sener could auto-
matically tailor its contentdepending on the network path
to each client, or an “opportunistic netwaking” applicetion
coud improve its schedding of data transfers.

Several techngues have beenpropced to predict the
latencyof short TCP transfersbasel on online measue-
mentsof charateristics of the currentTCP conrection, or
of recent conrectionsfromthe sameclient We analyze the
predictive abilities of thesetechniques using tracesfrom a
variety of Websevers,andshav thatthey canachieve use
ful acaracyin many, but not all, cases.We alsoshav that
a previously-deseibed modelfor predicting shot-transfer
TCP latencycan be improved with a simple modification.
Ours is the first trace-basd analysis that evaluatesthese
prediction techniques acrossdiverseusercommunties.

1 Introduction

It is often useful to predictthe latency(i.e., duraton) of
a short TCP transfer beforedecidng when or whetter to
initiate it. Network bandvidths, round-trip times (RTTs),
andlossratesvary over manyorders of magnitude,and so
thetransferdatencyfor agivendataitem canvary similarly.

Examples where such predictons might be usdul in-
clude:

e aWebsevercoud automatcally selectbetween “low-
bandwdth’ and”high-bandwdth’ versionsof conent,
with the aim of keeping the users download latency
belowv athreshatl [9, 16].

e A Web seaver using shored-remaining-processng-
time (SRPT) scheduling [19] could beter predct over-
all respmsetimes if it can predict network transfer
latency which in many casis the primary contrib-
utor to responsdime.

e An application using oppatunistic netwaking [20]
might chooseo schelule which data to send basedon
an estimate of the duration of a transfer opportunity
andpredictionsof which dataitemscanmake the most
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effective useof thatoppatunity.

There areseerd possilbe waysto define“short” TCP
transfers. Models for TCP perfomancetypically distin-
guishbetweerongflowswhich have achievedsteadystate,
and shot flows which do nat lag long enoudp to leave
theinitial slow-start phase. Alternatively, one could define
short in termsof an arbitrary threshodl on transfer lengh.
While defining “short” in termsof slow-start behaior is
less arbitrary, it is alsolesspredictable (becausethe dura-
tion of slow-start depend®n unpredictabé factors suchas
crossraffic and packetloss), andsofor this paper we usea
definition basedon transfe lengh. Similarly, while trans-
fer lengthcould be defined in terms of the numberof data
packets sent, this also depends on unpredctable factors
sich as MTU disaovery andthe interactions between ap-
pli cation buffering andsoclet-level buffering. So,for sim-
plicity, in this paper we define”shat” in terms of the num-
ber of bytestransferred.

Several techngueshawe previously been proposedfor
aubmaed predction of the transfertime for a shat TCP
transfer Someof thesetechniques gleantheir input para
metersfrom charateristics of TCP connectims, such as
roundtrip time (RTT) or congestn window size (cwnd),
thatarenat normadly exposedo theseverapplcation. We
call thesecharateristicsTCP arcam. Thesecharaderist-
ics canthen be used in a previously-descrbed modd for
predicting shat-transfe latency[2]. Other techniquesuse
obsevations of the adud latency for pag transfes to the
sameclient (orto similarly locatedclients),and assumethat
pastperformanceisagoad predicta of futureperformance.

In this paper, we usepadet-level tracescaptured nea a
variety of red Web seversto evaluae the ability of tech-
niques basedon both TCP arcanaand historical obseva-
tion to predict shat transferlatencies. We show that the
previously-described modeldoes nat quite fit the obseva-
tions, but that a simple modification to the mode grealy
improves the fit. We also descibe an experiment sug-
gesting (basel on a limited datased) that RTT obseva
tions coud be useal to discriminate, with modestaacuracy



betweendialup and non-dialup patts.

Thiswork compkments previouswork on predcting the
throuchput obtainedby long TCP transfers. He etal. [7]
charaterized thesetedhniques as either formula-base or
history-based;our TCP arcaanaapprachis formula-basd.

2 Latency prediction techniques

We startwith theassumptin thatan appication wishing
to predict thelatencyof ashorttransfer mustdo so as early
aspossble, beforeanydata has been transferred We also
assumehat predttion is beingdore at the sever end of
a comection that was initiated by a client; althoud the
appoadescould be extendedto client-side prediction, we
hawe no data to evaluatethatscenario

We examine two predicton approachein this pape:

e Theinitial-RTT approach: Thesener'sfirst possibé
measurenent of the conrection RTT is provided by
the intenal betweenits initial SYN|ACK packet and
the client's subsequenACK. For shorttransfers this
RTT measuementis often sufficient to predict sub-
sqguent datatransfer latencyto this client. This ap-
proach wasfirst proposed by Mogul andBrakmo [15]
anddiscussd in [16]. We descibe it furtherin Sece
tion2.1.

e Therecent-tr ansfers approad: A sener can predict
the datatransfer bandwdthto a givenrequestbase on
recenty measuredtransfer bandwidthsto the sarre cli-
ent. This approach,in the context of Webseavers,was
proposedn [9]; we descrike it further in Section 2.2.

2.1 Predictionfrom initial RTTs

Supmseone wants to predictthe transferlatency for a
respanseof a given length over a spedfic HTTP connec
tion, with no prior information about the client andthe net-
work path, andbeforehaving to makethevery firstdedsion
abaitwha conent to sendto theclient. Let usassumehat
we do not want the server to generateextra network traffic
or causeextra delays. Whatinformation coud one glean
from the TCP connedion before it is too late?

Figure 1 shows a timeline for the packetssent over a
typical non-persistentHTTP comection. (We asume that
the client TCP implementaton doesnat allow the client
appication to send data until after the 3-way handshake;
this is true of most commonstacks.) In this timdine, the
sener has to makeits decision immeditely after seeing
the GET-beaing padet (P,) fromtheclient.

It mightbe possble to infer netwvork path characterisics
from therelative timing of the client's first ACK-only (Ps)
and GET (P,) packets,using a packet-pair methal [11].
Howeer, the initial-RTT predicbr instea uses the path's
RTT, asmeauredbetweerthe sever's SYN|JACK packet
(P;) andthe client's sutsequentACK-only packet(P;).
Since these two padets are both nea-minimum lengh,
they provide a direct measurerentof RTT, in the absence
of packet loss.
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Figurel: Timdine: typical HTTP connedion

Why might this RTT be a useful predctor of transfer
latency?

e Manylasthop network technologiesimposeboth high
delay and low bandwdth. For exanple, dialup mo-
densalmostalwaysaddaboutl00msto theRTT [4, 5]
and usually limit bandwdth to under 56Kb/s. If we
obsere an RTT muchlower than 100ms, we canin-
fer that the path doesnot involve a modem. (See See
tion 5 for quanitative evidence) A similar inference
might be madeabout same (perhapsnot all) popular
low-bandwith wireless media.

e Evenwhen theend-b-endbandvidth islarge, the total
transfer time for shat responsesiepends mosty on
the RTT. (Therefore, an HTTP requestheaderindicat-
ing client connedion speedwould notreliably predict
latencyfor such transfers.)

Cardwelletal. [2] shavedthatfor transfersmaller than
the limiting window size the expeded latencyto transfer
d segnens via TCP, when there are no padet losses is
approximaed by

Ellatency] = RTT - log.y(y +1) 1)
1
where
e v dependsontheclient sddayed-ACK pdicy; reason-
ablevaluesarel.50r 2 (see [2] for details).
e w; dependsonthesaver'sinitial valuefor cwnd; ress-
onabk valuesare?, 3, or 4 (see [2] for detaik).
o d=[ ]
e len isthenumberof bytes sent.
e M SS is the TCP maximumsegmet size for the con-
nedion.
NotethatmedianwWebresponssizes (we usethedefinition
of “respmsé€ from the HTTP spedfication [6]) aretypic-
ally smalkr thanthelimiting window size see Sedion 3.4.
End-b-endbandwdth limits and packet losse can only
increaethis latency. In other words, if we know the RTT




andregonsesize thenwe can predicta lower boundfor
thetransfe latency.

We would like to use the RTT to predict the transfer
latencyas soonas posdble. Therefore,the first time a
sener seesa requestirom a given client, it hasonly one
RTT measrrementto usefor this purpose.But if theclient
returnsagain which RTT measurenentshoubl the sener
usefor its predction? It could usethe mostrecent meas-
urement(that is, fromthe current comection), asthisis the
freshest; it could usethemean of all measurements, to deal
with noise it could usean exporentially smoohedmean,
to reducenoisewhile favoring freshvalues;t could usethe
minimum measirement, to accountfor variablequeueing
delays; or it could usethe maximummeasurerent to be
corservative.

“Most recent,” which requres no perclient state, is the
simplestto implement,andthis is the only variantwe have
evaluated.

2.2 Prediction from previoustr ansfers

Krishnanurthy andWill s originally describedthenotion
of using measuremats from previous transfes to estm-
ate the conrectivity of clients [9]. A prime motvation of
thiswork wasto retainpoorly conrectedclients,whomight
avoid aWebsiteif its pagestaketoolong to download. Bet-
ter conneded clientscould be presatedenhan@dversiors
of the pages.

This apprach is largely passive: it examnes sener
logsto measurethe inter-arrival time between base-obgct
(HTML) requestandthe requestdor thefirst and lastem:
bedded objects typically images. Exporentially smoothed
means of thesemeasurementsarethenusedto classify cli-
ens. A nawork-aware clusterirg scheme [8] wasusedas
aninitial classificéion mechanismijf aclienthadnotbeen
sea before but anober client from the sarre cluster had
already usedthe site. Krishnamury and Wills useda di-
versecolledion of sener logsfrom multi ple sites to evalu-
ate the desgn, andKrishnanurthy et al. presatedan im-
plemengtion [10], using a modified versia of the Apache
sener, to testtheimpactof variousseveractonsonclients
with differentconnedivity.

Therecent-transfersapproachthatwe study in this pape
is a simplfication of the Krishnanurthy and Will s design.
Becausdheir measuremats use Web saver logs, this gave
themenoughinformation about pagestructure to investg-
ate the algorithm's abili ty to predictthe donnload time for
an enire page including embeldedobjects. We hawe not
extracted object-relaibnship information from our packet
traces, so we only evaluated per-respase latency rather
thanperpagelatency On the otherhand, mostsenerlogs
provide timing informaion with one-seond resoluion,
whichmeanghatalog-base evaluatoncannd providethe
fine-grainedtiming resolution that we gat from our packet
traces.

2.3 Defining tr ansfer latency

We hawe so far been vague abait defining “transfer
latency Ore might definethis asthetime betwea thede-
parture of the first regpponsebyte from the server andthe
arrival of the last responsebyte at the client. However,
without perfed clock synchroiization and padet traces
madeat every hostinvolved, this duratonis impossibk to
measue.

For this pape, we define transfer latencyas the time
between the deparure of the first resporse byte from the
sener andthe arrival at the sever of the adknowledgment
of the last respoise byte. (Figure 1 deptts this intenal
for the caseof a non-persistentonrection.) This tendsto
inflateour latency meauement by appoximately RTT/2,
but becausepah delays can be asymmaeric we do not at-
tempt to correctfor tha inflation. We are effectively meas-
uring anupper bound on the transferlatency

3 Methodology

We foll owedthis overall methodology:

e Step 1. collect padket traces near a variety of Web
saverswith differentanddiverseuserpopuations.

e Step2: extact the necessay comection paraneters,
including client IDs, from theseraw tracesto crede
intermediate traces.

e Step 3: evaluatethe predictors using simple simu-
lator(s) drivenfrom the intermediate traces.

Althowh the predction mechanisms analyzed in this
paper are not necessaily spedfic to Web traffic, we lim-
ited our trace-basedstuly to Web traffic beausewe have
not obtainedsignficant and diversetraces of other shat-
transfertraffic. It might be usefulto capture traffic nea
busy e-mal seners to getanoherrelevantdatased, since
e-mailtransfers alsotendto be short [13].

Giventha we aredefining “short’” TCPtransfersinterms
of the numbe of data bytes sent, we analyzel threeplaus-
ible threshotls: 8K bytes, 16K bytes, and32K bytes; this
paper focuseson the 32K byte thredwold. (Therespmse
size distributionsin Figure 2 suppat this chaice.)

3.1 Tracesets

We collectedtrace setsfrom several different erviron-
mentsall in North America. For reasonf confideniality,
we idenify thesesetsusing short names:

e C2: Collected on a corporatenetwork

e U2,U3,U4: Collectedat aUniversity

e R2: Collected ata corporate reseach lab
In all caes,the traces were collectedon the public Inter-
net (not on an Intranet)andwere coll ectedrelatively nea
exadly onepubilicly-accessibé Websener.

We collectedfull-padket traces,usingtcpdump, andlim-
itedthetracesto include only TCP connedions to or from
thelocd Webseaver.

While we wanted to collect traces covering an entire
week at each site, staage limits and other restrictions



meant thatwe had to collect a series of shorer traces. In
orderto cover representatve periods over the courseof a
week (May 3—9 2004), we choseto gathertraces for two to
fourhouseachday: 9:00AM-11:00AM Monday Wednes-
day, andFriday; 2:00PM-4:00PM Tueglay and Thursday;
and10.00AM-2:00PM Saurdayand Surday (all arelocal
timeswith respetto the tracesite: MST for C2, MDT for
U2, and PDT for R2). We addtionally gathereal two 24-
hour (midnight to midnight) tracesat the University: U3
on Thursday Aug. 26, 2004,and U4 on Tuesday, Aug. 31,
2004.

3.2 Arethesetr acesrepresentatve?

We certairly would preferto hawe tracesfrom a diverse
sampleof seners, clients, and network patts, but this is
not nee@ssay to validate our approach. Our god is not to
predict the latencies seen by all client-serer pars in the
Internet,but to find a method for a given server to predict
thelatencies thatit itsdf (andonly itself) will encunter in
the near future.

It is true that some seners or client popuations might
differ so much from the onesin our traces that our res-
ults do nat apply. Althoudh logistical and privacy con-
straints prevent us from exploring a wider se of traces,
our andysis tools are available at http://bro-ids.om/bro-
cortrib/network-analysis’fakm-imc05/ so that others can
ted our analyses ontheir own traces.

Theresuts in Sectio 4.6imply that our equation-basel
predictor works well for somesites andnot sowell for oth-
ers. One could useour trace-based mehodlogy to dis-
cover if a server's respomse latencies are sufiiciently pre-
dictable beforededding to implementprediction-base ad-
apetion atthat sener.

3.3 Traceanalysistools
We start by procesing the raw (full -padet binary) traces

to geneaate onetuple perHTTPrequestiesponseexchange.

Ratherthanwrite a new program to proces the rawtraces,
we took advantage of Bro, a powerful tool originally meant
for network intrusion detedion [17]. Bro includes a policy
scriptinterpreterfor saipts writtenin Bro's custan script-
inglanguagewhich allowed usto do this processingwith a
relatively simple policy saipt — about 800lines,includng
commeits. We currently useversion 0.8a74of Bro.

Bro reducesthe network stream into a seriesof higher
level events. Our policy scrig defines handers for the rel-
evant events. We identify four andysis statesfor a TCP
comection: not_establshed, timing_SYN_ACK, estab-
lished, and error _has occurred. We also use four ana
lysis statedor each HTTP transadion: waiti ng_for_reply,
waiting_for _end of_reply, waiting _for_ack_of _reply, and
transation_.complete. (Our scrigt follows existing Bro
practice of usingtheterm*“reply” in lieu of “respasé for
state names.)

Progessian throwgh these states occurs as follows.

When the client's SYN packetis received, a data structre
is createdto retain informaion on the conrection, which
startsin the not_estabished state.Whenthe corresponihg
SYN|ACK packetis receved from the saver, the modeled
comection enters the timing_SYN_ACK state, and then
to the edablished statewhen the client adknowledges the
SYN|ACK.

We thenwait for http _request() events to occur on that
comection. When a reques is received, a data struc-
ture is creaed to retaininformation on that HTTP trans-
acton, which starts in the waiting_for _reply transation
state. On an http_reply() event that statebecomes wait-
ing_for _end of reply. Once the saver has finishedsend-
ing the respmse the transadion stateis se to wait-
ing_for _ack_of_reply. Oncetheentre HTTP resporsehas
beenacknowledgedby the client, tha stateis setto tr ans-
action_complete. This design allows our script to properly
handle persistentandpipelined HT TP connections.

Our analyss uses an additiona state, er-
ror_hasocaurred, which is used, for example, when
a TCP comection is resé, or when a packetis missirg,
causinga gapin the TCP data. All subsequenpacketson
a conrection in an error _has occurred state areignored,
although RTT and bandwdth estimaes are still recorded
for all HTTP transectionsthat compkted ontheconnedion
before theerrorocaurred.

For eachsuaesfuly completedand sucesgully traced
HTTP requestfesponsexchange, the scriptgeneratesone
tuple thatincludesthe timegamp of the arrival time of the
client's acknovledgemat of all outstanding responselata;
theclient s IP address;the responses length, conent-type,
andstatis code;the pasition of therespoise in a persistent
comection (if any); and estimates of the initial RTT, the
MSS the responséransferlatency andtherespasetrans-
fer bandwidth. The latencyis edimated as describedin
Sectin 2.3, andthe bandvidth estmate is thencompuied
from thelatency estiimate andthelengh.

Thesetuples form anintermediatetrace, convenient for
further analysis and sewerd ordersof magntude smaller
thanthe origind raw padet trace. For almostall of our
stbsequent andysis,weexamineonly resporseswith statis
coce = 200, since thes are the only onesthat should al-
wayscary full-length bodes.

3.3.1 Proxiesand robots

MostWeb senersrecave requeds from mutti-client proxy
seners, and from robot suchas seach-engne crawlers;
both kinds of clientstendto make more frequentrequests
thansingle-human clients. Requestsfrom proxies and ro-
botsskewthe referencestreamto make the average connec
tion's bandwidth more predictable, which could bias our
resultsin favor of our prediction mechanisms.

We therefore“pruned” our traces to renove apparent



proxies and robds (identfied usirg a separateBro scrip);
we thenanalyzed both the prured andunprunedtraces.

In order to awid tediaus, error-prone, and privacy-
disrupting techniques for distingushing robas and prox-
ies we testeda few heurstics to autanatically dete¢ such
clients:

e Any HTTP requestincluding a Vi a heade probably
comesfrom a proxy. The corverseis not true; some
proxiesdo not insat Vi a headers.

e Any requestincluding a Fr omhealer probably comes
from arobot. Not all robas insertFr omhealers.

e If agivenclientIP addresgenerates requestsvith sev-
erd different User - Agent headersduringasthortin-
tenal, it is probablya proxy sener with multiple cli-
entsthat use more than one browser It coud also
be a dynanic IP addressthat hasbeen reassgnedto
adifferentclient, sothetime scaleaffectstheacairacy
of this heuristic. We ignoreUser - Agent: con-
t ype headers,sincethis is an artifact of a particular
browse [12, 14].

Thereallts of thesetestsrevealedthatthe Fr omheade
is not widely used, but it is areasonablenethod for identi-
fying roboss in our traces. Our test resuts also indic-
ated that simply excluding all clientsthatissued a Vi a or
User - Agent healer would resut in excesive pruning.

An analyss of the Vi a healers sugyested thatcompon-
enssich aspersmd firewalls alsoadd thisheaderto HTTP
requests. As aresut, we decidedto only pruneclients that
incluceaVi a healer thatcan be autamatically identified as
amulti-client proxy: for exanple, thoseadded by a Squd,
NetApp NetCade,or Inktomi Traffic-Sener proxy.

We adgted a similar approac for pruring clients that
sentmulti ple differentUser - Agent heades. First, were-
quire thatthe User - Agent heades be from well-known
browsers(e.g., IE or Mozilla). Thesebrowse's typically
formtheUser - Agent headerin avery structued formd.
If we cannot identify the type of browser the browserver-
sion, and the clientOS,we donotusethehealer in theana
lysis. If we thensee requestgrom two different browsers,
browserversims, or client OSscoming from the same IP
addessin thelimited duration of the trace, we considerthis
to bea proxy, and excludethatclient from the prunetrace

We optedto err (slighty) on the side of excessve prun-
ing, ratherthan striving for accuracyin order to reducethe
chancs of biasirg our reallts in favor of our predicors.

3.4 Overall trace characteristics

Tablel shows various aggrecpte statitics for each trace
set,to provide somecontext for the red of theresuls. For
reasonf spacewe omit day-bydaystatstics for C2, R2,
andU2; thes show the usualdaily variationsin load, al-
thowgh C2 andR2 pe& on the weekend, while U2 pe&ks
during the work week. The table alsoshaws totalsfor the
prunedversiors of each trace sd. Finally, thetable shavs

total responsebytes, responsecount, and meanresponse
size for just the status-P0 resposes on which most sub-
sequentnalysesrebasel.

We add “p” to the namesof trace sds that have been
pruned(eg., a prunedversion of traceset “C2” is namel
“C2p”). Pruning reducesthe number of clients by 5% (for
trace C2) to 13% (for R2); the number of HTTP regponses
by 7% (for C2)to 23% (for R2, U3, andU4); and the pe&
request rateby 6% (for C2) to 11% (for R2).
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The mean values in Table 1 do not convey the whole
story. In Figures 2 and3, respetively, we plot cumukbtive
distributions for resporse size and latencyfor statis-200
respanses (Theseplotsexcludethe U3 and U4 traces, since
theseCDFsare nearly identicd to thase for the U2 trace;
Figure 3 alsoexcludes C2pandU2p, since theseCDFsare
nearly identical to thosefor the unpruned traces)

The three traces in Figure 2 shaov quite different re-
sponsesizedistributions. The responsef trace C2 seem
sanewhatsmadler thanhastypically been reportedfor Web
traces;theresponsesm traceR2 arealot larger. (Thesedif-
ferencesalsoappeain themeanrespmsesizesin Table 1.)
TraceR2isunuwsud, in part, becausemary usersof the site
downloadentire technical repots, which tend to be much
larger than individuad HTML or embedded+magefil es.

Figure 2 includes three vertical linesindicating the 8K
byte, 16K byte, and32K byte threshotls. Note that8K is
below the median sizefor R2, but above the mediansize
for C2 andU2, but the median for all tracesis well belov
32K bytes.



All HTTP statuscodes status code = 200

Total Total Total Total meanresp mean peak Total Total meanresp.
Tracenanme ‘ Coms. ‘ Clients Resp.bytes ‘ Resps. ‘ size(bytes) | req.rate ‘ req rate Resp bytes ‘ Resps.‘ size(bytes)
Cc2 323141 17627 3502M | 1221961 3005 2.3sec | 193sec 3376M | 576837 6136
C2p(pruned | 281375 16671 3169M | 1132030 2935 2.1sec | 18Ysec 3063M | 533582 5999
R2 33286 7730 1679M 50067 35154 0.1/sec 35sec 1359M 40011 35616
R2p(pruned 23296 6732 1319M 38454 35960 0.1/sec 3l/sec 1042M 31413 34766
u2 261531 36170 5154M 909442 5942 1.7'sec | 169sec 4632M | 580715 8363
U2p (pruned) | 203055 33705 4191M 744181 5904 1.4sec | 152sec 3754M | 479892 8202
U3 278617 29843 5724M 987787 6076 | 11.4sec | 125sec 526IM | 63730 8655
U3p (pruned) | 197820 26697 4288M 75694 5939 8.8sec | 117sec 3940M | 491497 8405
U4 326345 32047 6800M | 1182049 6032 | 13.7sec | 139sec 6255M | 76345 8589
U4p (pruned) | 230589 28628 5104M 9029% 5926 | 10.9sec | 139sec 4689M | 588%4 8347

Table 1: Overall tracecharaderistics

Figure 3 shavs that responselurations aresigrificantly
longer in the R2 tracethan in the others, possibly beause
of thelonger responseizesin R2.
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We cdculatedfor eachdistinct client, ameanbandwdth
acrossll transferdor that client. Figure4 shows the dis-
tributions; the pruned traceshad similar distributions and
arenotshown. Trace C2 has amudh largerfraction of low-
bandwidth usesthanR2 or U2. Theapparet slight excess
of high-bandwidth clientsin R2 might resultfrom thelarger
respanses in R2; larger transfersgenerally increase TCP's
efficiencyat using available bandwdth.

We alsolooked at the distribution of the TCP Maximum
Sgment Size(MSS)valuesin ourtraces. In trace R2, vir-
tually all of the MSS values were at or closeto the stand-
ardEthernet limit (about 1460bytes);in tracesC2 and U2,
abait 95% of the MSS valueswere nea the limit, with
the restmostly closeto 512 bytes. Figure 2 shaws a ver-
tical lineat 1480 bytes, indicating appoximatelywhere the
dominantMSS value lies ontheresporse size distribution.

3.5 Traceanomalies
The monitoring architeduresavailable to us differedat
ead of the collection sites. For example, atoneof the sites
port mirroring wasusedto copy packets from a monitored
link to the mirrored link. At anoher site, separate links
were tappedpne for packetsboundfor the Webseaver, the
seond for packets sent by thesaver. Thesemonitoringin-
frastructures aresubpct to avariety of measurenenterrors:
e Port mirroring multiplexes bidirectional traffic from
the montoredlink onto the unidirectional mirror link.

This cancause packetsto appearin thetracein adiffer-
entorder than theyarrivedonthe monitoredlink. Such
reordemg typically affectspacketstha ocaurredclose
together in time. For example, in the U2 trace, 10%
of conrectionshadthe SYN and SYN|ACK padetsin
reverseorder. Our Bro script correctsfor this.

e Port mirroring temporarily buffers padets from the
monitoredlink untl theycanbe sent over themirrored
link. This buffer can overflow, causing packetsto be
dropped.

e Seeral of our environments have multiple network
links that transfe packetsto or from the Web sener.
Since we could not monitor all of theselinks, we did
not cgpture all of the HTTP requestresponsdransac
tions. In somecasswe capture only half of the trans-
adion (about 48% of the connedions are affected by
this in onetrace).

e Idedly, a traced padket would be timestanped at the
predse instant it arrives. However, trace-colledion
systemsbuffer padkets at least briefly (often in sev-
erd placeg befor attaching a timestamp, andpackets
are often collected at several nearby points (e.g.,two
padet monitors on bath menbers of a pair of simplex
links), which introducestimestamperrors due to im-
perfed clock syrchronization. Erroneoudimestanps
couldcauseerrorsin our andysisby affecting either or
both of our RTT esimates and our latencyestmates.

We estmated the numberof padets lost within our
measurement systemby watchirg for gaps in the TCP
sequencewumbes. This could overesimate losses(e.q.,
due to reordered padets) but the estimates, as reportedin
Tabk 2, arequite low.

Table 2 aso shows our esimates (based on a sepa-
ate Bro saipt) for padet retransmissio rateson the path
between client and sever, implied by padets that cover
part of the TCP seqience spae we have alrealy seen.
Retransmssiors normadly reflect packet lossesin the In-
ternet, which would invalidate the model usedin equa-
tion 1. Knowing theserates could help understandvhere
theinitial-RTT appoachis applicable.

Note that Table 1 only includesconnectimswith atleast
one complete HTTP respose, while Table 2 includesall



Total Total Measuemern Retransmitted Conns.w/ | Conns.w/nopkts
Tracename paclets Coms. systemlost pkts. paclets | retrarsmittedpaclkets in one direction
Cc2 40474900 | 1182499 17017 (0.04%) | 114911(0.3%) 53906 (4.6%) 572052 (48.4%)
R2 2824548 43023 1238 (0.04%) 27140 (1.0%) 4478(10.4%) 460 (1.1%)
u2 11335406 313462 5611 (0.05%) | 104318 (0.9%) 26815 (8.6%) 17107 (5.5%)
u3 11924978 328038 2093 (0.029%) 89178 (0.7%) 26371 (8.0%) 14975 (4.6%)
U4 14393790 384558 5265 (0.04%) | 110541 (0.8%) 30638 (8.0%) 18602 (4.8%)

Table 2: Paketlossrates

comections, including thosethat endin erras. We were
only ableto use27% of the connedions listedin Table 2
for C2, parly because we only sawpacketsn onediredion
for 48% of thecomedions. Our andysisscrt flaggedan-
otheras20%of the C2 comectionsaserror _has occurred,
possiby dueto unknown prablemsin the monitoring infra-
structure.

4 Predictions base oninitial RTT: results

In this se¢ion, we summaize the results of our exper-
iments on techniques to predrt transferlatency using the
initial RTT. We addresshesequestons:

1. DoesRTT per secorrelatewell with latency?

2. How well doesequaton 1 predictlatency?

3. Can we improve onequaton 1?

4. What isthe effect of modemcompression

5. How sensitive are the predictons to parameer

chdces?

Thereis no single way to define whatit means for alatency
predictor to provide “good” predictions. We evaluatepre-
diction methals using several criteria, including the cor-
relation between predicted and measuredatenciesandthe
mean andmedian of the differencebetwea the adud and
predictedlatencies

4.1 DoesRTT itself correlate with latency?
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Figure 5: Saatter plot of bandwidthvs. RTT, trace C2

Pehaps it is unrecessaryto invoke the full complexity
of equatim 1 to predct latencyfrom RTT. To investicgate
this, we examined the correktion betweenRTT per seand
eitherbandwidth or latency.

For exanple, Figure 5 shavs a scater plot of bandwdth
vs. initial RTT, for all status200 respases in trace C2.
(In order to awid oversatuating our scdter plots, we ran-
domly sampled the actualdatain each plot; the sampling
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Figure6: BW vs.RTT, trae C2,1 MSS < lengh < 32KB

Measured transfdr bandwidth (bits/sec

ratios are shown in the figures.) The graph shows an ap-
parent weak correlation betwea initial RTT and transfer
bandwidth. Correspoding scater plots for R2, U2, U3,
andU4 show even wedker correlatons.

We foundastrangercorrelatonif we focusedon transfer
lengtls above oneMSS and below 32K bytes, as shavn in
Figure 6. Our tedhnique for measuting latency is probably
leastaccurate for reponsedelon oneMSS(i.e., those sent
injustone padet). Also, single-packetesponsemay suf-
fer excessapparet delay(as measuredoy whenthe sener
recaves the final ACK) becaiseof delayed acknovledg-
mentatthe client In our subsequeranalysesye exclude
respanseswith lengths of one MSSor lessbecauseof these
measurement difficulties. The 32KB thresholl repreent
oneplausible choicefor defining a“short’ transfer

Trace Samples Correlation | Carrelation
name included w/bandwidth w/lateny
Cc2 140234 (24.3%) 0.3 051
C2p 129661 (24.3%) 0.30 0.508
R2 7500(18.7%) 0.112 0.3e4
R2p 5519(17.6%) 0.054 0.418
u2 218280 (37.6%) 0.163 0.448
U2p 181180 (37.8%) 0.1 0.4
u3 234591 (36.8%) 0.18L 0.421
U3p 181276 (36.9%) 0.228 0.427
U4 283993 (37.2%) 0.1P 0.3e4
U4p 219472 (37.3%) 0.23 0.411
(a) 1 MSS< lengh < 8KB
Trace Samples Correlation | Carelation
name included w/bandwidth w/lateny
Cc2 261931 (45.4%) 0.35 0.42%6
C2p 233948 (44.8%) 0.3® 0.42%6
R2 20546 (51.4%) 0.154 0.348
R2p 15407 (49.0%) 0.08 0.340
u2 312090 (53.7%) 0.166 0.3®2
U2p 258049 (53.8%) 0.1P 0.401
u3 336443 (52.8%) 0.162 0.263
U3p 259028 (52.7%) 0.215 0.27
U4 414209 (54.2%) 0.167 0.287
U4p 320613 (54.4%) 0.215 0.343

(b) LMSS< length< 32KB

Table3: Corelations RTT vs. eitherbardwidth or lateng



For a more quantfied evaluation of this simpiistic ap-
proad, we did a statstical analysis using a simple R [18]
program. Theresuls areshown in Table 3(a) and (b), for
lengtls limited to 8K and32K bytes,regectively.

Thetables show rows for bath prured and unprurned ver-
sionsof thefive basc traces. We indludedonly statis-200
respanseswhoseength wasatleastoneMSS;the“ sanples
incluced” columnshaws thatcountfor eachtrace. Thelast
two columns show the computedcorrelation betweenini-
tial RTT andeither transfe bandwith or transferlatency.
(The bandwdth correlations are negtive, beausethis is
aninverserelationshp.)

For the data setincludng respmselengths up to 32K
bytes,none of thesecorrelations exceels 0.426, and many
aremuch lower. If we limit the respanselenghs to 8K
bytes, the correlations improve, but this also eliminates
mostof thesanples.

We tried excludng sanples with an initial RTT value
above some quantie, on the theorythat high RTTs correl-
ate with losg/ network paths;this slightly improves RTT
vs. bandwdth correbtions (for exanple, excluing records
with anRTT above 281 mse redwcesthe numbe of 32K-
or-shorer sanplesfor R2 by 10%, andimprovesthat cor-
relation from -0.154to -0.302 but it actually worsenghe
latencycorrelatons (for the sane example from 0.348 to
0.214).

Note that, contrary to our expectation that tracesprured
of proxiesand robas would be lesspredctable, in Table 3
this seemstrue only for the R2 trace; in general, prun-
ing seemsto slighty improve predctability. In fact, while
we presat results for both prunedand unpruned traces
throughaut the pape, we seeno consisent differencein
predictability.

4.2 Doesequation 1 predict latency?

Althowh we did not expect RTT to correlate well with
latency we might expect beter resuts from the sophst-
icated mode derived by Cardwell et al. [2]. They valid-
ated their modd (eguation 1 is a simplified version using
HTTP transfersover the Internet,but apparenty used only
“well-conneded” clients andsodid not probeits utility for
poorly-conrected clients. They alsoused RTT edimates
thatincludedmoresampleghanjusteach comection'sini-
tial RTT.

We thereforeanalyzed the ability of equation 1 to pre-
dict transferbandwiths andlatenges usingonly the ini-
tial RTT, andwith the belief that our tracesinclude some
poorly-conrectedclients.

Figure 7 shavs an examplescatter plot of measured
latencyvs. predicted latency, for trace C2. Again, we in-
cludeonly statis-200respoisesat leastoneMSSin lengh.
We hawe superimpsedtwo curves on the plot. (Sincethis
is a log-log plot, most linear equatons resultin curved
lines.) Any point above theline y = z represens an under-

10 F  Sampling ratio = 0.01

Measureddatency (sec)

0.001 0.01 0.1 1 10

Predicted latency per response (sec)
vy=20,w =4

Figure 7: Red vs. predictedatercy, trace C2

prediction of latency; underpreditions are generally worse
thanoverpredictions,if (for exanple) we want to awid ex-
posing Web usersto unexpectedly long downloads. Most
of the points in the plot are above that line, but mostare
below thecurvey = z + 1.0sec, implying thatmostof the
overpredctions (in this example)arelessthanl secin ex-
ces. However, a significantnumber aremary seconds too
high.

We extended our R programto compue statistics for the
predictive ability of equation 1. Far eachstatus-P0 trace
record with a length between one MSS and 32K bytes,
we used the equation to predct a latency, andthen com-
pared this to the latency recorded in the trace record We
thencompuéd the correlaton betweenthe adua andpre-
dicted latencies.We also compued a residwl error value,
asthe difference betwee the actual and predicted laten-
cies. Table 4 shavs the resuls from this analyss, using
v = 1.5 andw; = 1, aparaneterassigmentthat worked
fairly well acrossall five traces.

Trace Sampes | Correlation | Median Mean
‘ name ‘ included‘ w/lateny ‘ residual ‘ residual ‘
Cc2 261931 (45.4%) 0.581 -0.017 0.164
C» 238948 (44.8%) 0.584 -0.015 0.176
R2 20546 (51.4%) 0.416 -0.058 0.261
R2p 15407 (49.0%) 0.421 -0.078 0.272
u2 312090 (53.7%) 0.502 -0.022 0.110
U2p 258049 (53.8%) 0.519 -0.024 0.124
u3 336443 (52.8%) 0.334 0.018 0.152
U3p 259028 (52.7%) 0.363 0.016 0.156
U4 414209 (54.2%) 0.354 0.013 0.141
Udp 320613 (54.4%) 0.425 0.010 0.136

Residwal valuesaremeasiredin semnds; 1 MSS < lengh < 32KB
Table 4: Qudity of predictions based on equation 1

In Table4, themedian residwals arealwaysnegatve, im-
plying that equaton 1 overestimates the transferlatency
more often thanit underestimates it. Howewer, the mean
residuals are always posiive, beausethe equation’'s un-
derestmates are more wrong (in absolte terms) thanits
overegimates The samplesn Figure7 generdy follow a
line with a steepe slope than y = z, sugyeging that equa
tion 1 espedly underestimates higher latencies.

Onepossble reasonis that, for lowerbandwidth links,
RTT dependson packet size For a typical 56Kkb/'s mo-
dem link, a SYN padet will seeanRTT somewhatbove



100 msec, while a 1500 byte data packet will seeanRTT
several times larger. This effect could causeequaton 1 to
underetimatetransfer latencies.

4.3 Can weimprove on equation 1?

Giventhat equaton 1 seens to sysematically underes-
timate higher latencies,exacty the error that we wantto
avoid, we realized that we coud modfy the equation to
reduce theseerrors.

We experimenied with several modifications, includng
alinear multiplier, but one simple approachs:

function ModifiedEqOngRTT, MSS,Lengthw,

~, CompWeight)
temp= EquationOngRTT, MSS,Length, w, , ¥);
return(temp + (temp*temp*CompW&ight));

Tha is, we “overpredict” by a term proportional to the
square of theoriginal predicton. Thisis a heuristic, not the
result of rigorous theory.

We found by trial and erra thata proportionality con-
stant, or “compensaton weight; CompWeight = 2.25
worked best for C2, but CompWeight = 1.75 worked
better for R2 U2, andCompW eight = 1.25 worked best
for U3 and U4. For all traces,y = 2 got the bestresuts,
andwe setw; = 4 for C2andU2, andw; = 3 for R2,U3,
andU4. We disauss the sensiivity to theseparanetersin
Sectin 4.5.
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Figure8: Modified predction reaults, trace C2

Figure 8 shavs how the modfied predttion algoithm
systematically overpredictsat higher latendes, while not

significanty changing the accuracy for lower latencies.

(For example, in this figure, CompWeight = 2.25; if
equation 1 predicts a latencyof 0.100 seonds, the mod-
ified predction will be 0.1225seconds). Howeer, even
the modfied algorithm significanty underpredicts a few
samples,we do nat believe we can awid this, espedlly
for connedions that suffer packetloss(seeTable 2).

Table5 showstha the modificationsto equation 1 gene-
ally worsenthe correlations, compaed to thosein Table 4,
but definitely improves the residuals— the median erroris
alwaysless than 100 msec, and the mean erroris lessthan
15 msec, except for traces U3p and U4p (our parameer
chdceswere tuned for the unprured traces).

Trace Sampes | Correlation | Median Mean
name included w/lateny | residwal | residwal
Cc2 261931 (45.4%) 0.417 0.086 -0.002
C» 238948 (44.8%) 0.423 0.092 -0.006
R2 20546 (51.4%) 0.278 0.015 0.002
R2p 15407 (49.0%) 0.311 0.019 0.013
u2 312090 (53.7%) 0.386 0.053 0.010
U2p 258049 (53.8%) 0.402 0.056 0.001
u3 336443 (52.8%) 0.2711 0.034 0.011
U3p 259028 (52.7%) 0.302 0.036 -0.020
U4 414209 (54.2%) 0.279 0.035 0.003
Udp 320613 (54.4%) 0.337 0.038 -0.033

Residual valuesaremeasiredin semnds; 1 MSS < lengh < 32KB
Table5: Predictions based on modified equation 1

4.4 Textcontent and modemcompresson

Mary people still usedialup modens. It has been ob-
senedthatto accurately modd path bandwidth, one must
acount for thecompresiontypically doneby modems|3].
Howewer, most image ContentTypes are already com-
pressed,so this corredion shoud only be donefor text
cortent-ypes.

HTTP regpponsesnomally carry a MIM E Cortent-Type
labd, which allowed usto analyzetrace subsds for “text/*”
and“image*” subsds. Table6 shaws the distribution of
thesecoarse Content-Type distinctionsfor thetraces.

We speallatedthatthe latencypredicton modelof equa
tion 1, which incorporatesthe reponselengh, could be
further improved by reducing this lengh value whencom-
presson might be expected. (A sener making predctions
knows the Cortent-Typesof therespmsesit plansto send.
Same seversmight use a compresse conent-coding for
textresponsesyhichwould obviatetheneal to correct pre-
dictionsfor those response$or modemcompressian. We
foundno suchresponsefn our traces.)

We canna diredly predict either the compressiorra-
tio (which varies among responsesand anong modens)
nor can we reliably determire which clientsin our traces
used mocems. Therefore, for feasibility of analysis our
modkel assume a consant compressitility fador for text
respanses, and we testedseveral plausble values for this
fador. Also, we assumedhatan RTT beow 100msecim-
plied a non-modenconrection, andRTTs above 100 msec
implied the possibk useof a modem In a real sysem,
information derived from the client addessmight identify
mocdem-usersmorereliably. (In Section 5 we classifycli-
ens using hostnams; but this might addtoo much DNS-
lookup delayto be effective for latencypredction.)

Table7 shaws resuls for text conent-typesonly, using
themodified predition algaithm base on equaton 1, but
without correctng for possble modem compressin. We
sety = 2.0 for C2andU2, andy = 1.5 for R2, U3, and
U4; w; = 2 for C2 and w; = 3 for the other traces and
CompWeight = 1 for al traces. (We hawe not testeda
wide rangeof CompW eight valuesto seeif text content-
typeswould bendit fromadifferentCompW eight.) Com-
paredto the reailts for all conent types(seeTable 5), the
residualsfor text-only sanplesaregenerdly highet



[ Contert-type I C2 | R2 | U2 | U3 U4 |
Unknown 3 (0.00%) 26 (0.06%) 178 (0.03%) 157 (0.02%) T44(0.02%)
TEXT/* 122426 (2122%) | 23139 (57.8%) | 85180(14.67%) | 92108 (14.45%) | 107958 (14.14%)
IMA GE* 454458 (78.78%) | 13424 (33.59%) | 465160(80.10%) | 507330 (79.60%) | 607520 (79.57%)
APPLICATION/* 0 (0.00%) 3410 (8.52%) 29733 (5.12%) 37581 (5.90%) 47765 (6.26%)
VIDEO/ 0(0.00%) 4(0.01%) 17 (0.00%) 10 (0.00%) 5 (0.00%)
AUDIO/* 0 (0.00%) 8 (0.02%) 446 (0.08%) 194 (0.03%) 140 (0.02%)

Table 6: Countsard frequercy of content-ypes(excluding samerarely-seentypes

Trae Sanples | Corelation | Medan Mean
name included w/latercy | residual | reddual
Cc2 118217 (96.6%) 0.442 0.142 0.0@
C2p 106120 (96.4%) 0.449 0.1%2 -0.0
R2 12558 (54.3%) 0.288 0.010 0.065
R2p 8760 (50.2%) 0.353 0.017 0.1
u2 70924 (83.3%) 0.292 0.10 0.073
U2p 56661 (83.0%) 0.302 0.110 0.065
u3 76714 (83.3%) 0.207 0.063 -0.02L
U3p 56070 (83.2%) 0.198 0.072 -0.09
U4 90416 (83.8%) 0.281 0.066 -0.034
U4p 65708 (83.8%) 0.359 0.078 -0.12
Residwal valuesaremeasiredin semnds; 1 MSS < lengh < 32KB

Table 7: Predictiongor text cortent-types only

Trace | Sanples | Conpression | Correlation | Median Mean
‘ name ‘ included ‘ factor‘ w/latercy ‘ residual ‘ resicual ‘
Cc2 118217 10 0.442 0.142 0.02
C2p 106120 10 0.449 0.152 -0.08
R2 12558 4.0 0.281 0.013 0.02
R2p 8760 4.0 0.345 0.021 0.044
u2 70924 3.0 0.25 0.083 0.08
U2p 56661 3.0 0.306 0.096 0.004
u3 76714 4.0 0.208 0.002 0.001
U3p 56070 4.0 0.201 0.003 0.063
U4 90416 4.0 0.277 0.000 0.011
U4p 65708 4.0 0.353 0.007 0.083

Table8: Predictionsfor text with compession

Table8 shavsresuts for text contenttypes whenwe as-
sumed that modems compres theseby the factor shavn
in the third column. Note tha for C2 and C2p, we got
the bestreallts using a compressiotiactor of 1.0— thatis,
without correctng for compresson. For the other traces,
correcting for compiessian did give betterresuls. Here we
setthe other paranetersas:y = 2 (exceptfor U3 andU4,
wherey = 1.5 worked best), w; = 1 (exceptor C2 where
w; = 2 worked best), and CompWeight = 1.0 (except
for R2, where CompWeight = 2.25 worked best). We
experimentedvith assumir that the path did nat involve a
mocdem (andthus shoutl not be correctedfor compresmn)
if theinitial RTT wasunder100 mseg but for R2 and U2
it turnedou that we got the best resuks whenwe assumd
thatall text reponsesshoud be correctedfor compressim.

Table 8 shaws that, exceptfor trace C2, correding for
mocdem compressbn improves the mean residuals over
thosein Table 7. We have nat evaluatedthe useof com-
presson factors other thanintegers between 1 and 4, and
we did not evaluate a full range of CompWeight values
for this sedion.

Imagecontent Asshavnin Table6,imageconent-types
dominatemostof thetraces, exceptfor R2. Also, Website

designersare more likely to have choicesbetween rich and
simpleconent for imagetypesthan for texttypes. (Desgn-
ersofteninclude optiond “Flash” animations, but wefound
almostno Flashcortentin C2 and R2, and relatively little
in U2, U3, andU4.) We therefore comparedhe predictb-
ility of transferlatenciedor imageconent-types but found
no clear difference comparedo the resuls for all content
ingeneal.

45 Sensitvity to parameters

How sensitive is predicton performanceto the para
metersy, wy, and CompWeight? Thatquestion can be
framedin severalways: how do the results for one sener
vary with paranetervalues?Af paramdersarechoserbasel
on traces from sener X, do they work well for sener
Y? Are the optimd values consant over time, client sub-
population, content-iype, or responselength? Do optimal
parameer values dependon the performance metric? For
reasonsof spa@, we focuson the first two of these ques-
tions.

Figure 9 shavs how the absolde valuesof the mean
andmedian residuds vary with v, w;, andCompW eight
for traces C2, R2, and U2. The optimd paraneterchoice
depends on whether one wantsto minimize the mean or
the median; for example, for R2, v = 2.0, w; = 3, and
CompWeight = 1.75 yieldsanoptimal meanof 1.5msec
(and a median of 15 msee). The median can be furtherre-
duced to 0.2 mseg but atthe costof increasing themean to
over hdf asecond

Figure 9 also shows how the optimal paranetersvary
acrossseeral traces. (Resuls for traces U3 and U4 are
similar to thosefor U2, and are omitted to reduce clut-
ter) It appeas that no single choice is optimal acrossall
traces, although somechoices yield relatively small mean
andmediandor mary traces.For exanple,y = 2, w; = 3,
andCompW eight = 1.25 yieldsoptimal or nea-optimal
mean residualsfor U2, U3, and U4, anddecentresuts for
c2.

4.6 Training and testing on different data

The results we hawe preseted so far used parameer
chdces “trained” on the samedatasds as our resuks were
teded on. Sinceany real predction systemrequres ad-
vance training, we alsoevaluatedpredictonswith training
andtesting on differentdatasets.

Our trace collection was not carefuly designedin this
regard;we have no pairsof data ses that are conpletely
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identcd andadjacentin time. For the C2, R2, and U2
data sets,we chosethe first threedaysasthe training data
set,and the last four days asthetestng datase. However,
because we collected daa at differenthours on each day,
andbeausehereareday-ofweek differences betveenthe
training andtesting setsthe testng sesincludestwo week-
enddays), we suspect that thesepairs of datasds mightnot
be sufficienty similar. We alsouseal the U3 datasetto train
parameersthatwe thentested ontheU4 data set;thesewo
tracesaremoresimilar to each other.

Trained parametes Testingresults
residal rark

Trace Comp in (of best
name ¥y | wi Weight | training 96) | resdual resd.
Cc2 2.0 4 2.50 0.000 15 0.08 0.004
C» 2.0 3 1.75 0.004 12 0.08 0.002
R2 15 4 1.50 0.004 20 0.1% 0.000
R2p 15 3 1.00 0.003 16 0.15 0.003
u2 15 4 1.50 0.001 10 -0.072 0.012
U2p 2.0 2 0.75 0.004 9 0.08L 0.002
u3u4 2.0 2 0.75 0.007 3 0.013 0.003
U3U4p | 20 1 0.25 0.000 2 0.013 0.010

Residwal valuesaremeasiredin semnds; 1 MSS < lengh < 32KB

Table 9: Training andteging on different data

Table9 shawsresuts for training vs. teding. We tested
andtrainedwith 96 parameder combirations, basedon the
two passible choicesfor v, the four choicesfor w;, and
twelve equdly-spaced choices for CompWeight. The
trained parameters are thosethat minimize the absolue
valueof themeanresidual in trai ning. Thecolumnsunder
testing results show how theresuls usingthetrainedpara
metersrank amongall of the testing reallts, the meanre-
sidualwhenusing thoseparanetersand theresidualfor the
best possble paranetercombnatian for thetestirg data.

Theseresuls suggestthat the degee to which training
cansucesfuly sdect paranetervalues might vary signi-
ficantly from site to site. Basedon our traces, we would

hawe had the most suaces making us€ul predctions atthe
Universily site (U3-U4), andthe least siccessat the Re-
seach site (R2).

However, the differencein “trainabiity” that we ob-
senedmightinsteadetheresultof the much closer match
betweenthe U3 andU4 datasets,comparedo the time-of-
day and day-ofweek discrganciesin the other train/test
comparisas. For C2, R2, andU2, wetried training juston
one day (Tue, May 4, 2004) andtesting on the nextday
and got significantly better trainabiiity (except for R2p,
whichwasslightly worse)thanin Table9; this suportsthe
needto matchtraining and testirg datasetsmorecarefully.

4.7 A serwer'sdecison algorithm

To understand how a server might usethe initial-RTT
appoad in practice Figure 10 presentspseudo-codefor
generating predictions. (This exanple is in the cortext of
aWebsaveradapting its conent basel on predictedrans-
fer latency but the basc idea should apply to other con-
texts) If the serverhasN > 1 choicesof resporse length
for agivenrequestjt would invoke PredictLaency N — 1
times,startng with the largest canddateand moving down
in size, untl it either finds one with a smdl-enowgh pre-
dicted latency, or has only one chaice left. Thefirst three
amgumentgo the PredictLatencyfunction (RTT, MSS,and
client IP addresspreknown assoonas the connetion is
open. Thelast two (responseonent type and length) are
specific to a canddateresporsethatthe server might send.

Thefunction ProbablyDialup, notshavn here,is aheur-
istic to gues whether a client is conneded via a modem
(which would probably compresdext respomses). It could
simply assumehat RTTs above 100 msecare from dia-
lups, or it could use additional information basedon the
client's DNS nameor AS (AutonomousSysem) numbe
to identify likely dialups.



1. function
PredictLateng(RTT, MSS, ClientIP, CortentType, Lergth)

N

if (ProbalyDialup(ClientIR RTT)
and (CortentType == TEXT)) then
effectiveLergth := Length/TextCompressiorfractor;
dse
effectiveLergth := Length;
end

o0 hw

if (lengh > maxPredctableLergth)then
return(NO_PREDICTION); /* probally |eaves slow-gart */
dseif (lengh < MSS) then
return(NO_PREDICTION); /* only onedatapadet to serd */
end

B © 00N

=
= o

12. return(ModfiedEqnOngRTT, MSS, Length w1, 7,
CompNeigh));

TextCompressionFactor is anestimateof the meancompressionra-
tio for modemson tex fil es;

CompWeight. w1, and~y coud themséves vary base onthesever's
obsevationof recenthistory the CortentType,etc.

Figure 10: Psaido-codefor the decision algorithm

5 Detecting dialups

We speculatedhata sener could discriminate betwea
dialups and non-dialups using clues from the client's
“fully-qualified domain nanme” (FQDN). We obtaired
FQDNs for about 75% of the clientsin the U4 trace, and
thengroyed themaccording to clues in the FQDNsthat
implied geography and network technology. Note that
mary could nat be categrizedby this method and some
cate@rizationsarecertainl wrong

[ Catgory [ Coms. [ 5%ile | median [ mean | 95%ile |
By geqrapty
All 326359 0.08 0.069 | 0.172 0.680
N. America 35972 0.0 0.068 | 0.124 0.436
S.Ameiica 2372 0.183 0.229 | 0.339 0.882
Europe 12019 0.1 0.169 | 0.262 0.717
Asia-Racific 9176 0.16 0.267 | 0.373 0.885
Africa 2027 0.206 0.370 | 0.486 1.312
"Dialup” in FQDN
All 11478 0.144 0.350 | 0.664 2.2715
Regional 5977 0.133 0.336 | 0.697 2477
Carada 1205 0.2 0.460 | 0.751 2.060
us 575 0.18 0.366 | 0.700 2.210
Europe 566 0.183 0.216 | 0.313 0.861
DSL” in FQDN
All 59211 0.0 0.023 | 0.060 0.210
Local 1816 0.011 0.022 | 0.034 0.085
Regional 47600 0.0 0.018 | 0.032 0.079
us 1053 0.071 0.085 | 0.117 0.249
Europe 118 0.148 0.162 | 0.178 0.313
Cable” in FQDN
All 6599 0.03 0.077 | 0.132 0.338
Carada 2741 0.03 0.055 | 0.088 0.22
us 585 0.072 0.086 | 0.094 0.127
Europe 600 0.143 0.155 | 0.176 0.244

Times in seconls;bold entriesare> 0.1 sec.

Table 10: RTTsby geograpi and conrectiontype

Table10 shavs how initial RTTsvary by geography and
comection type. For the connectonstha we could cat-

egorize, at least95% of “dialup” connectims have RTTs
abore 100 msec, andmost“cabk” and“DSL’ connedions
have RTTsbelov 200msec. Thesereallts seemunafected
by further geographcal subdvision and sugport the hy-
pothesis tha a threshdd RTT betwea 100 and 200 msec
would disaiminate fairly well betweendialup and non-
dialup connetions. We do not know if thesereaults apply
to other traces.

6 Predictions from previous bandwidths:
results

In this section, we compae howv well predicton basel
on variantsof equaton 1 compareswith predctions from
theolderrecenttransfersappioach. We addresstheseques-
tions:

1. How well canwe predictlatency from previous band-

width measuements?

2. Doesacombination of thetwo approachsimprove on

eitherindividual predctor?

Note that the recent-transfersapproactcannd spedfic-
ally predict the latencyfor the very first transferto a given
client,becausehe serverhasnohistoryfor thet client. This
is aproblemif thegoal is to provide the bestuser experi-
encefor a clients initial contactwith a Web site. For ini-
tial contcts,asaver using therecent-transfers apprachto
predict latencyhasseveral options,incduding:

e Makeno predictbn.

e “Predict” the latency basel on history aaoss all
previous clients; for exanple, use an expnentally
smoothed meanof all previoustransferbandwidths.

e Assumethat clients with similar network locations,
basel on routing informaton, hawe similar band-
widths; if a new client belongs to “cluser” of clients
with known bandwiths, use history from that cluser
to make a prediction. Krishnamurtl and Wang [8]
descibe a technique to discower clustersof client IP
addresss. Krishnamurthy and Wills [9] thenshaowved,
using a setof chasen Web pageswith variouscharae
teristics, thatclusterirg paysoff in prediction acairacy
improvements ranging up to abou 50%. We spewlate
that this approachwould alsowork for our traces.

e Usetheinitial-RTT techniqueto predict aclient'sfirst-
contactlatency, and usethe recenttransfergecnique
to predict subsequent latenciedor each client. We call
this the hybrid technique.

Wefirstanalyzehepurestform of recenttransfergmaking
no predction for first-contad clients), and then consder
the mean-of-all-clients andhybrid techniques.

6.1 Doesprevious bandwidth predict latency?
We did a statistical analysis of the predicton ability of
several variants of the pure recent-tanferstechnique. In
ead case we made predictions and mantained history
only for transfe lenghs of at least one MSS. Table 11



Correlation with

most mean weighted
Trace Sanples reent previous mea
name included bardwidth | bandwvidth | bardwidth
Cc2 262165 (45.4%) 0.674 0.742 0.7%2
C2p 233957 (44.8%) 0.6 0.732 0.737
R2 24163 (60.4%) 0.58 0.665 0.666
R2p 17741 (56.5%) 0.52 0.543 0.5
u2 310496 (53.5%) 0.527 0.661 0.6
U2p 254024 (52.9%) 0.437 0.593 0.561
u3 341968 (53.7%) 0.4% 0.627 0.63
U3p 260470 (53.0%) 0.508 0.669 0.65
U4 421867 (55.3%) 0.521 0.690 0.647
U4p 323811 (55.0%) 0.551 0.690 0.65%6

Bestcarrelationfor eachtraceshown in bold

Table 11: Correlations measiredvs. recent bandwvidths

shows the reaults. The first two columns show the trace
name and the number of samples adudly useal in the
analsis. The next three columns show the correlations
betweenthe bandwidth (nat latency)in atrace recordand,
respedively, the mostrecent bandvidth for the same cli-
ent the mean of previous bandwidths for the client, and
the exporential weighted mean X; = o - X;_1 + (1 —
a)measurement;. WefollowedKrishnarurthy et al. [10]
inusing e = 0.7, although other values might work beter
for specific traces.

Theseresuts sugyestthatsomeform of meanis the best
variant for this prediction technique; although the choice
betweensimple meansandweighted means varies betwee
traces, these always outperform predictons basel on just
themostpremvous transfer Since Kri shnanurthy etal. [10]
preferred the weighted mean, we follow their lead for the
rest of this pape.

Pruring the traces, aswe had expected, doesseen to
decreasethe predictability of bandwith values,except for
the U3 andU4 traces. This effect might be magrified for
therecenttransfergechnique, since(unliketheinitial-RTT
technique) it reliesespeially onintra-clientpredictability.

Table11 shaved correlations between bandwdth meas-
urements and predictions. To predict a respmsés
latency one can combhne a bandwidth predction with
the known responsdength. Table 12 shovs how well
the weighted mean bandwith technique predicts laten-
cies. Table 12(a) includesresponsesvith lengh at least
one MSS; Tablke 12({p) exclues responsedonger than
32 Kbytes. Because shortresponses and long regponses
may be limited by different paraneters(RTT and bot-
tlened bandwidth, respetively), we hypotheszed that it
might not make senseto predictshortregonselatencies
basedon long-resporse history. Indeed, the residualsin
Tabke 12(b) are always betterthanthe correspording val-
uesin Tablke 12(a),althowgh the correlatobnsarenot always
improved.

Thecorrelationsin Table 12(a)are better thanthosefrom
the modified equaton 1 as shown in Table 5, except for
trace U4. However, the mean residwls in Table 12 are
muchlargerin magnitudethanin Table 5; it might be pos-

Trace Sanples || Correlation | Median Mean
name included w/latercy | residwal | residwal
Cc2 262165 (45.4%) 0.514 -0.042 -0.502
C2p 233957 (44.8%) 0.515 -0.046 0.529
R2 24163 (60.4%) 0.525 -0.066 4.100
R2p 17741 (56.5%) 0.560 -0.140 5.213
u2 310496 (53.5%) 0.475 0.028 1.037
U2p 254024 (52.9%) 0.460 0.033 1.142
u3 341968 (53.7%) 0.330 0.025 1.138
U3p 260470 (53.0%) 0.374 0.029 1.288
U4 421867 (55.3%) 0.22 0.021 0.957
Udp 323811 (55.0%) 0.251 0.024 1111
(@) LMSS < lengh
Trace Sanples || Correlation | Median Mean
‘ name H included H w/latercy ‘ residual ‘ residual ‘
Cc2 256943 (44.5%) 0.516 -0.038 -0.485
C2p 234160 (43.9%) 0.516 -0.043 -0.512
R2 17445 (43.6%) 0.317 -0.018 -0.779
R2p 12741 (40.6%) 0.272 -0.054 -0.959
u2 287709 (49.5%) 0.256 -0.020 -0.407
U2p 235481 (49.1%) 0.247 -0.024 -0.454
u3 314965 (49.4%) 0.447 0.017 0.300
U3p 239843 (48.8%) 0.484 0.020 0.336
U4 390981 (51.2%) 0.338 0.015 0.274
Udp 299905 (50.9%) 0.312 0.017 0.314

(a) 1 MSS< length < 32KB
Table 12: Latercy predictionvia weighted meanbandvidth

sible to corred the bandwidth-basel predictor to fix this.

The previous-bandidth appoad consisently over-
predictslatency, whichin someappli cationsmight bebeter
thanuncderprediction. Figure 11 shavs anexamplescatter
plot, for R2. In the Web-serer contentadaptatbn applic-
afon, excessive overpredction increases the chance that
a well-connecteduser will fail to receive rich conent, al-
thowgh this is less harmful than sending excessive content
to a poorly-conneded user

100

10 F  Sampling ratio = 0.1

1F
y=x+0.1

Measureddatency (sec)

0.1
0.01 |-
OAOOl".:": Nl el FEEETIN | P |
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Figure11: Realvs.bardwidth-predictedlateng, trace R2

6.2 Combining predictors

Giventha theinitial-RTT appr@chsesms moreaccurate
at predcting first-congct latencies,for many threshotls,
thanthe recent-transfersapproachwye speculated thata hy-
brid of thetwo predictas might yield the bestreallts. This
hybrid would usethe modfied equaton 1 predctor for a
client'sfirst-contactiransferand the smoothed meanof the
client's previousbandwilths for its subsguenttransfers.



We found that the overall (all-transfers)yccuracyof this [5]
hybrid is nearly indistinguishale fromtheoverall acaracy
of the recent-transfers approad becaise,as the statistics
in Table 1 imply, only a smallfraction of transfers in our (6l
tracesarefirst conects.

7 Summary and conclusions i

We condicted a study, basel on traces from seerd dif-
ferentusercomnunities,to denonstratehow well two dif- (8]
ferent appoachescan predict the latency of shot TCP
transfers.We found that by makirg a minor modfication
to a previously-descibedformula,we could greatly reduce
its absdute predictbn errors. We shaved that predctions
basedon observation of past history generdly yield beter
overall correlatonsthanour formula-bagd predicta, but  [1q]
the formula-bagd predictor haslower mean predction er-
rors. We alsoshaw thatthe formula-based predictor could
be improved to hande the specific case of text conent,
where modembased compressiorcan affect latency Fi- [11]
nally, we repoted results from a study on the relationship
betweenround-trip time and theuseof modems,suggesting
thatthis relationship might be exploited to improve predic-
tion accuracy.

This paper hasnot quantified how much a real appica-
tion, sud asa Web saver, could improve end-to-end per-
formance by using our prediction techniques. Our tech-  [13]
nical report [1] provides someadditional analysis of this
andotherdetails thatdo nat fit here

(9]
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