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Abstract
In somecontexts it may beuseful to predict thelatencyfor
short TCPtransfers.For example, aWeb servercould auto-
matically tailor its contentdepending on thenetwork path
to each client, or an “opportunistic networking” application
could improve itsscheduling of data transfers.

Several techniqueshave beenproposed to predict the
latencyof short TCP transfersbased on online measure-
mentsof characteristics of thecurrentTCPconnection, or
of recent connectionsfromthesameclient. Weanalyzethe
predictive abilitiesof thesetechniques using tracesfrom a
variety of Webservers,andshow thattheycanachieveuse-
ful accuracyin many, but not all, cases.We alsoshow that
a previously-describedmodelfor predicting short-transfer
TCPlatencycanbe improved with a simple modification.
Ours is the first trace-based analysis that evaluatesthese
prediction techniquesacrossdiverseusercommunities.

1 Intr oduction
It is oftenuseful to predictthe latency(i.e., duration) of

a short TCP transfer beforedeciding whenor whether to
initiate it. Network bandwidths, round-trip times (RTTs),
andlossratesvary over manyorders of magnitude,and so
thetransferlatencyfor agivendataitem canvarysimilarly.

Examples where suchpredictions might be useful in-
clude:� aWebservercould automatically selectbetween “low-

bandwidth” and“high-bandwidth” versionsof content,
with the aim of keeping the user's download latency
below a threshold [9, 16].� A Web server using shortest-remaining-processing-
time(SRPT) scheduling[19] could better predict over-
all response times if it can predict network transfer
latency, which in manycases is the primary contrib-
utor to responsetime.� An application using opportunistic networking [20]
might chooseto schedule which data to sendbasedon
an estimate of the duration of a transfer opportunity
andpredictionsof which dataitemscanmakethemost

effective useof thatopportunity.
There areseveral possible ways to define“short” TCP

transfers. Models for TCP performancetypically distin-
guishbetweenlongflowswhich haveachievedsteadystate,
and short flows which do not last long enough to leave
theinitial slow-start phase.Alternatively, one could define
short in termsof an arbitrary threshold on transfer length.
While defining “short” in termsof slow-start behavior is
less arbitrary, it is also lesspredictable(becausethedura-
tion of slow-start dependson unpredictable factorssuchas
crosstraffic and packetloss),andsofor thispaper weusea
definition basedon transfer length. Similarly, while trans-
fer lengthcould bedefined in termsof thenumberof data
packets sent, this also depends on unpredictable factors
such as MTU discovery andthe interactions between ap-
plication buffering andsocket-level buffering. So,for sim-
plicity, in thispaper wedefine“short” in termsof the num-
ber of bytestransferred.

Several techniqueshave previously been proposedfor
automated prediction of the transfertime for a short TCP
transfer. Someof thesetechniques glean their input para-
metersfrom characteristics of TCP connections, such as
round-trip time (RTT) or congestion window size(cwnd),
thatarenot normally exposedto theserverapplication. We
call thesecharacteristicsTCParcana. Thesecharacterist-
ics canthen be used in a previously-described model for
predicting short-transfer latency[2]. Other techniquesuse
observations of the actual latency for past transfers to the
sameclient (or to similarly locatedclients),and assumethat
pastperformanceisagood predictor of futureperformance.

In this paper, we usepacket-level tracescaptured near a
variety of real Web serversto evaluate the ability of tech-
niques basedon both TCP arcanaand historical observa-
tion to predict short transferlatencies.We show that the
previously-described modeldoes not quite fit theobserva-
tions, but that a simple modification to the model greatly
improves the fit. We also describe an experiment sug-
gesting (based on a limited data set) that RTT observa-
tionscould beused to discriminate, with modestaccuracy,



betweendialupandnon-dialuppaths.
Thiswork complementspreviouswork onpredicting the

throughput obtainedby long TCP transfers. He et al. [7]
characterized thesetechniques as either formula-based or
history-based;our TCParcanaapproach is formula-based.

2 Latency prediction techniques
Westartwith theassumptionthatan application wishing

to predict thelatencyof ashorttransfer mustdoso asearly
aspossible, beforeanydata has been transferred.We also
assumethat prediction is beingdone at the server end of
a connection that was initiated by a client; although the
approachescould beextendedto client-side prediction,we
have nodata to evaluatethatscenario.

We examine two predictionapproaches in thispaper:� The init ial-RTT approach: Theserver's first possible
measurement of the connection RTT is provided by
the interval between its initial SYN

�
ACK packet and

the client's subsequentACK. For short transfers,this
RTT measurement is often sufficient to predict sub-
sequent datatransfer latencyto this client. This ap-
proach wasfirst proposedby Mogul andBrakmo [15]
anddiscussed in [16]. We describe it further in Sec-
tion2.1.� The recent-tr ansfers approach: A server can predict
thedatatransfer bandwidth to agivenrequestbased on
recently measuredtransfer bandwidthsto the samecli-
ent.This approach,in thecontext of Webservers,was
proposedin [9]; wedescribe it further in Section 2.2.

2.1 Prediction from initial RTTs
Supposeone wants to predictthe transferlatency, for a

responseof a given length over a specific HTTP connec-
tion, with noprior informationabout theclient andthenet-
workpath,andbeforehaving to makethevery firstdecision
about what content to sendto theclient. Let usassumethat
we do not want theserver to generateextra network traffic
or causeextra delays. What information could one glean
from theTCPconnection before it is too late?

Figure 1 shows a timeline for the packetssent over a
typical non-persistentHTTP connection. (We assume that
the client TCP implementation doesnot allow the client
application to senddata until after the 3-way handshake;
this is true of most commonstacks.) In this timeline, the
server has to makeits decision immediately after seeing
theGET-bearingpacket ( ��� ) from theclient.

It mightbepossible to infer network path characteristics
from therelative timing of the client's first ACK-only ( ��� )
andGET ( � � ) packets,using a packet-pair method [11].
However, the initial-RTT predictor instead uses thepath's
RTT, asmeasuredbetweenthe server's SYN

�
ACK packet

( ��� ) and the client's subsequentACK-only packet( � � ).
Since these two packets are both near-minimum length,
theyprovide a direct measurementof RTT, in the absence
of packet loss.

SYN (P1)

SYN|ACK (P2)

ACK (P3)

HTTP GET (P4)

ACK (P5)

HTTP REPLY (P6)

HTTP REPLY (P7)

FIN (P8)

ACK (P9)

1 RTT

Client Server

T
ransfer latency

Figure1: Timeline: typical HTTPconnection

Why might this RTT be a useful predictor of transfer
latency?� Many last-hopnetwork technologiesimposeboth high

delay and low bandwidth. For example, dialup mo-
demsalmostalwaysaddabout100msto theRTT [4, 5]
and usually limit bandwidth to under 56Kb/s. If we
observe an RTT muchlower than100ms, we can in-
fer that thepath doesnot involve a modem. (See Sec-
tion 5 for quantitative evidence.) A similar inference
might be madeabout some (perhapsnot all) popular
low-bandwidth wirelessmedia.� Evenwhen theend-to-endbandwidth is large, the total
transfer time for short responsesdepends mostly on
the RTT. (Therefore, an HTTP requestheaderindicat-
ing client connection speedwould not reliably predict
latencyfor such transfers.)

Cardwelletal. [2] showedthatfor transferssmaller than
the limiting window size, the expected latencyto transfer	

segments via TCP, when there areno packet losses, is
approximatedby


�� ������������������ �!�#"$�%'&�(*) 	 )�+-,/.'0132 4 .50 (1)

where� + dependsontheclient'sdelayed-ACK policy; reason-
ablevaluesare1.5or 2 (see [2] for details).�61 2 dependson theserver'sinitial valuefor cwnd; reas-
onable valuesare2, 3, or 4 (see [2] for details).� 	 �87:9<;>=?�@A@�B� ���� is thenumberof bytessent.�DCFEGE is theTCP maximumsegment size for thecon-
nection.

NotethatmedianWebresponsesizes(weusethedefinition
of “response” from theHTTP specification [6]) aretypic-
ally smaller thanthelimitingwindow size; seeSection 3.4.

End-to-endbandwidth limi ts and packet losses can only
increasethis latency. In other words,if we know theRTT



andresponsesize, thenwe can predicta lower boundfor
theH transfer latency.

We would like to use the RTT to predict the transfer
latencyas soonas possible. Therefore,the first time a
server seesa requestfrom a given client, it hasonly one
RTT measurementto usefor this purpose.But if theclient
returnsagain, which RTT measurement should the server
usefor its prediction? It could usethe mostrecent meas-
urement(that is, fromthecurrent connection),asthis is the
freshest; it could usethemean of all measurements,to deal
with noise; it could usean exponentially smoothedmean,
to reducenoisewhile favoringfreshvalues;it could usethe
minimum measurement,to account for variablequeueing
delays; or it could usethe maximummeasurement, to be
conservative.

“Most recent,” which requires no per-client state, is the
simplestto implement,andthis is theonly variantwehave
evaluated.

2.2 Prediction from previoustr ansfers
Krishnamurthy andWillsoriginally describedthenotion

of using measurements from previous transfers to estim-
ate the connectivity of clients [9]. A prime motivation of
thiswork wasto retainpoorly connectedclients,whomight
avoid aWebsiteif itspagestaketoolong to download. Bet-
terconnected clientscould bepresentedenhancedversions
of thepages.

This approach is largely passive: it examines server
logsto measurethe inter-arrival time betweenbase-object
(HTML) requestsandthe requestsfor thefirst and lastem-
bedded objects,typically images. Exponentially smoothed
means of thesemeasurementsarethenusedto classify cli-
ents. A network-aware clustering scheme[8] wasusedas
aninitial classification mechanism,if a client hadnot been
seen before but another client from the same clusterhad
alreadyusedthesite. Krishnamurthy and Wills useda di-
versecollection of server logsfrom multiple sites to evalu-
ate the design, andKrishnamurthy et al. presentedan im-
plementation [10], using a modified version of theApache
server, to testtheimpactof variousserveractionsonclients
with dif ferentconnectivity.

Therecent-transfersapproachthatwestudy in this paper
is a simplification of the Krishnamurthy and Wills design.
BecausetheirmeasurementsuseWeb server logs,thisgave
themenoughinformation about pagestructure to investig-
ate thealgorithm's abili ty to predictthedownload time for
anentire page, including embeddedobjects. We have not
extractedobject-relationship information from our packet
traces, so we only evaluated per-response latency, rather
thanper-pagelatency. On the otherhand, mostserver logs
provide timing information with one-second resolution,
whichmeansthatalog-based evaluationcannot providethe
fine-grainedtiming resolution that we got from our packet
traces.

2.3 Defining tr ansfer latency
We have so far been vague about defining “ transfer

latency.” One might definethis asthetimebetween thede-
parture of the first responsebyte from the server and the
arrival of the last responsebyte at the client. However,
without perfect clock synchronization and packet traces
madeat every host involved, this duration is impossible to
measure.

For this paper, we define transfer latencyas the time
between the departure of the first responsebyte from the
server andthearrival at the server of theacknowledgment
of the last response byte. (Figure 1 depicts this interval
for the caseof a non-persistentconnection.) This tendsto
inflateour latency measurement by approximatelyRTT/2,
but becausepath delays can be asymmetric we do not at-
tempt to correctfor that inflation. Weareeffectively meas-
uring anupper boundon the transferlatency.

3 Methodology
We followedthis overall methodology:I Step 1: collect packet traces near a variety of Web

serverswith dif ferentanddiverseuserpopulations.I Step 2: extract the necessary connection parameters,
including client IDs, from theseraw traces to create
intermediate traces.I Step 3: evaluatethe predictors using simple simu-
lator(s)drivenfrom the intermediate traces.

Although the prediction mechanisms analyzed in this
paper arenot necessarily specific to Web traffic, we lim-
ited our trace-basedstudy to Web traffic becausewe have
not obtainedsignificant and diversetraces of other short-
transfertraffic. It might be useful to capture traffic near
busy e-mail servers to get another relevant dataset, since
e-mailtransfersalsotendto beshort [13].

Giventhat wearedefining“short” TCPtransfersin terms
of thenumber of data bytes sent, we analyzed threeplaus-
ible thresholds: 8K bytes,16K bytes, and32K bytes; this
paper focuseson the 32K byte threshold. (The response-
sizedistributionsin Figure 2 support this choice.)

3.1 Tracesets
We collected trace setsfrom several different environ-

ments,all in North America. For reasonsof confidentiality,
we identify thesesetsusing short names:I C2: Collected ona corporatenetworkI U2,U3,U4:Collectedat aUniversityI R2: Collected ata corporate research lab
In all cases,the traces were collectedon the public Inter-
net (not on an Intranet)andwere collectedrelatively near
exactly onepublicly-accessible Webserver.

Wecollectedfull-packet traces,usingtcpdump, andlim-
itedthetracesto include only TCPconnections to or from
thelocal Webserver.

While we wanted to collect traces covering an entire
week at each site, storage limits and other restrictions



meant that we had to collect a series of shorter traces. In
orderJ to cover representative periodsover the courseof a
week(May 3–9, 2004),wechoseto gathertracesfor two to
fourhourseachday: 9:00AM-11:00AM Monday, Wednes-
day, andFriday; 2:00PM-4:00PM Tuesday and Thursday;
and10:00AM-2:00PMSaturdayand Sunday (all arelocal
timeswith respect to the tracesite: MST for C2, MDT for
U2, and PDT for R2). We additionally gathered two 24-
hour (midnight to midnight) tracesat the University: U3
on Thursday, Aug. 26,2004,andU4 onTuesday, Aug. 31,
2004.

3.2 Ar e thesetr acesrepresentative?
We certainly would preferto have tracesfrom a diverse

sampleof servers, clients, and network paths, but this is
not necessary to validate our approach.Our goal is not to
predict the latencies seen by all client-server pairs in the
Internet,but to find a method for a givenserver to predict
thelatencies thatit itself (andonly itself) will encounter in
thenear future.

It is true that some servers or client populations might
dif fer so much from the onesin our traces that our res-
ults do not apply. Although logistical and privacy con-
straints prevent us from exploring a wider set of traces,
our analysis tools are available at http://bro-ids.org/bro-
contrib/network-analysis/akm-imc05/ so that others can
test our analyseson their own traces.

Theresults in Section 4.6imply that ourequation-based
predictor workswell for somesitesandnotsowell for oth-
ers. One could useour trace-basedmethodology to dis-
cover if a server's response latencies aresufficiently pre-
dictablebeforedeciding to implementprediction-based ad-
aptation at that server.

3.3 Traceanalysistools
Westart by processingtheraw(full -packet binary)traces

to generateonetupleperHTTPrequest/responseexchange.
Ratherthanwrite a new program to process the rawtraces,
wetook advantageof Bro, apowerful tool originally meant
for network intrusion detection [17]. Bro includes a policy
script interpreterfor scriptswrittenin Bro'scustom script-
inglanguage,which allowed usto do this processingwith a
relatively simple policy script – about 800lines,including
comments. We currently useversion0.8a74of Bro.

Bro reduces the network stream into a seriesof higher
level events. Our policy script defines handlers for therel-
evant events. We identify four analysis statesfor a TCP
connection: not established, timing SYN ACK, estab-
lished, and erro r has occurred. We also use four ana-
lysisstatesfor each HTTPtransaction: waiti ng for reply,
waiting for end of reply, waiting for ack of reply, and
transaction complete. (Our script follows existing Bro
practice of usingtheterm“ reply” in lieu of “response” for
state names.)

Progression through these states occurs as follows.

When the client's SYN packetis received, a data structure
is createdto retain information on the connection, which
startsin thenot established state.Whenthecorresponding
SYN KACK packetis received from theserver, the modeled
connection enters the timing SYN ACK state, and then
to theestablished statewhen the client acknowledges the
SYN KACK.

We thenwait for http request()events to occur on that
connection. When a request is received, a data struc-
ture is created to retain information on that HTTP trans-
action, which starts in the waiting for reply transaction
state. On an http reply() event, that statebecomes wait-
ing for end of reply. Once the server has finishedsend-
ing the response, the transaction state is set to wait-
ing for ack of reply. Oncetheentire HTTP responsehas
beenacknowledgedby theclient, that stateis setto tr ans-
action complete. Thisdesign allowsourscript to properly
handle persistentandpipelinedHTTPconnections.

Our analysis uses an additional state, er-
ror has occurred , which is used, for example, when
a TCP connection is reset, or when a packetis missing,
causinga gapin theTCPdata.Al l subsequentpacketson
a connection in an error has occurred state areignored,
although RTT andbandwidth estimates arestill recorded
for all HTTPtransactionsthat completed ontheconnection
before theerroroccurred.

For eachsuccessfully completedand successfully traced
HTTP request/responseexchange, thescriptgeneratesone
tuple that includesthe timestamp of thearrival timeof the
client'sacknowledgement of all outstanding responsedata;
theclient's IP address;theresponse's length, content-type,
andstatus code;thepositionof theresponse in a persistent
connection (if any); and estimates of the initial RTT, the
MSS, the responsetransferlatency, andtheresponsetrans-
fer bandwidth. The latencyis estimatedas describedin
Section 2.3, andthe bandwidth estimate is thencomputed
from thelatency estimate andthelength.

Thesetuples form anintermediatetrace, convenient for
further analysis and several ordersof magnitude smaller
than the original raw packet trace. For almostall of our
subsequent analysis,weexamineonly responseswith status
code LNM�O�O , since these are the only onesthat should al-
wayscarry full -length bodies.

3.3.1 Proxiesand robots

MostWebserversreceiverequests from multi-client proxy
servers, and from robots suchas search-engine crawlers;
both kindsof clientstendto make more frequentrequests
thansingle-humanclients. Requestsfrom proxiesand ro-
botsskewthereferencestreamto maketheaverageconnec-
tion's bandwidth more predictable, which could bias our
results in favor of our predictionmechanisms.

We therefore“pruned” our traces to remove apparent



proxies and robots (identified using a separateBro script);
weP thenanalyzed both thepruned andunprunedtraces.

In order to avoid tedious, error-prone, and privacy-
disrupting techniques for distinguishing robots and prox-
ies, we testeda few heuristics to automatically detect such
clients:Q

Any HTTP requestincluding a Via header probably
comesfrom a proxy. The converseis not true; some
proxiesdo not insert Via headers.Q
Any request including aFrom header probably comes
from a robot. Not all robots insertFrom headers.Q
If agiven clientIP addressgeneratesrequestswith sev-
eral different User-Agent headersduringa short in-
terval, it is probablya proxy server with multiple cli-
ents that use more than one browser. It could also
be a dynamic IP address that hasbeen reassignedto
adifferentclient,sothetimescaleaffectstheaccuracy
of this heuristic. We ignoreUser-Agent: con-
type headers,sincethis is an artifact of a particular
browser [12, 14].

Theresults of thesetestsrevealedthat theFrom header
is not widely used, but it is areasonablemethod for identi-
fying robots in our traces. Our test results also indic-
ated that simply excluding all clientsthat issued a Via or
User-Agent header would result in excessive pruning.

An analysis of theVia headers suggested thatcompon-
entssuch aspersonal firewalls alsoadd thisheaderto HTTP
requests. As a result, we decidedto only pruneclients that
includeaVia header thatcan beautomatically identifiedas
a multi-client proxy: for example, thoseadded by a Squid,
NetApp NetCache,or Inktomi Traffic-Server proxy.

We adopteda similar approach for pruning clients that
sentmultipledifferentUser-Agent headers. First, were-
quire that the User-Agent headers be from well-known
browsers(e.g., IE or Mozilla). Thesebrowsers typically
formtheUser-Agent headerin avery structured format.
If we cannot identify the typeof browser, thebrowserver-
sion,and theclientOS,wedonotusetheheader in theana-
lysis. If we thensee requestsfrom two different browsers,
browserversions, or client OSscoming from the same IP
addressin thelimited duration of thetrace,weconsiderthis
to bea proxy, andexcludethatclient from theprunetrace.

We opted to err (slightly) on thesideof excessive prun-
ing,ratherthan striving for accuracy, in order to reducethe
chancesof biasing our results in favor of our predictors.

3.4 Overall trace characteristics
Table1 shows variousaggregate statistics for each trace

set,to providesomecontext for the rest of theresults. For
reasonsof space, weomit day-by-daystatistics for C2, R2,
andU2; these show the usualdaily variationsin load, al-
though C2 andR2 peak on the weekend,while U2 peaks
during the work week. The table alsoshows totalsfor the
prunedversions of each trace set. Finally, the table shows

total responsebytes, responsecount, and meanresponse
size for just the status-200 responseson which most sub-
sequentanalysesarebased.

We add “p” to the namesof trace sets that have been
pruned(e.g., a prunedversion of traceset “C2” is named
“C2p”). Pruning reducesthenumber of clients by 5% (for
trace C2) to 13% (for R2); the number of HTTPresponses
by 7% (for C2) to 23%(for R2, U3, andU4); and thepeak
request rateby 6%(for C2) to 11% (for R2).
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The mean values in Table 1 do not convey the whole
story. In Figures 2 and3, respectively, we plot cumulative
distributions for response size and latencyfor status-200
responses(TheseplotsexcludetheU3 and U4 traces,since
theseCDFsare nearly identical to those for the U2 trace;
Figure 3 alsoexcludesC2pandU2p,since theseCDFsare
nearly identical to thosefor theunpruned traces.)

The three traces in Figure 2 show quite dif ferent re-
sponsesizedistributions. Theresponsesin traceC2 seem
somewhatsmaller thanhastypically been reportedfor Web
traces;theresponsesin traceR2 arealot larger. (Thesedif-
ferencesalsoappear in themeanresponsesizesin Table 1.)
TraceR2 isunusual, in part, becausemany usersof thesite
downloadentire technical reports, which tend to bemuch
larger than individual HTML or embedded-imagefiles.

Figure 2 includes three vertical linesindicating the 8K
byte, 16K byte, and32K byte thresholds. Note that8K is
below the median size for R2, but above the mediansize
for C2 andU2, but themedian for all tracesis well below
32K bytes.



Al l HTTP statuscodes status code T 200
Total Total Total Total meanresp. mean peak Total Total meanresp.

Tracename Conns. Clients Resp.bytes Resps. size(bytes) req. rate req. rate Resp. bytes Resps. size(bytes)

C2 323141 17627 3502M 1221961 3005 2.3/sec 193/sec 3376M 576887 6136
C2p(pruned) 281375 16671 3169M 1132030 2935 2.1/sec 181/sec 3053M 533582 5999
R2 33286 7730 1679M 50067 35154 0.1/sec 35/sec 1359M 40011 35616
R2p(pruned) 23296 6732 1319M 38454 35960 0.1/sec 31/sec 1042M 31413 34766
U2 261531 36170 5154M 909442 5942 1.7/sec 169/sec 4632M 580715 8363
U2p (pruned) 203055 33705 4191M 744181 5904 1.4/sec 152/sec 3754M 479892 8202
U3 278617 29843 5724M 987787 6076 11.4/sec 125/sec 5261M 637380 8655
U3p (pruned) 197820 26697 4288M 756994 5939 8.8/sec 117/sec 3940M 491497 8405
U4 326345 32047 6800M 1182049 6032 13.7/sec 139/sec 6255M 763545 8589
U4p (pruned) 230589 28628 5104M 902996 5926 10.5/sec 139/sec 4689M 588954 8347

Table 1: Overall tracecharacteristics

Figure3 shows that responsedurationsaresignificantly
longer in theR2 tracethan in theothers, possibly because
of thelonger responsesizesin R2.
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Wecalculated,for eachdistinct client, ameanbandwidth
acrossall transfersfor that client. Figure4 shows thedis-
tributions; the pruned traceshadsimilar distributions and
arenotshown. TraceC2hasamuch largerfraction of low-
bandwidth users thanR2or U2. Theapparent slight excess
of high-bandwidth clientsin R2 might resultfrom thelarger
responses in R2; larger transfersgenerally increaseTCP's
efficiencyatusing available bandwidth.

We alsolooked at thedistribution of theTCPMaximum
Segment Size(MSS)values in our traces. In trace R2,vir-
tually all of theMSSvalues were at or closeto thestand-
ardEthernet limit (about 1460bytes);in tracesC2 and U2,
about 95% of the MSS valueswere near the limit, with
the restmostly closeto 512 bytes. Figure2 shows a ver-
tical lineat 1460 bytes,indicatingapproximatelywherethe
dominantMSSvalue lieson theresponse-size distribution.

3.5 Traceanomalies
The monitoring architecturesavailable to us dif feredat

each of thecollection sites. For example, atoneof thesites
port mirroring wasusedto copy packets from a monitored
link to the mirrored link. At another site, separate links
were tapped,one for packetsboundfor theWebserver, the
secondfor packetssent by theserver. Thesemonitoring in-
frastructuresaresubject to avariety of measurementerrors:V Port mirroring multiplexes bidirectional traffic from

the monitoredlink onto theunidirectionalmirror link.

Thiscancausepacketsto appearin thetracein adiffer-
entorder than theyarrivedonthemonitoredlink. Such
reordering typically affectspacketsthat occurredclose
together in time. For example, in the U2 trace, 10%
of connectionshadtheSYN and SYN WACK packetsin
reverseorder. OurBro script correctsfor this.V Port mirroring temporarily buffers packets from the
monitoredlink until theycanbesent over themirrored
link. This buffer can overflow, causing packetsto be
dropped.V Several of our environments have multiple network
links that transfer packetsto or from the Web server.
Since we could not monitor all of theselinks, we did
not captureall of the HTTP request/responsetransac-
tions. In somecaseswe capture only half of the trans-
action (about 48% of the connections areaffectedby
this in onetrace).V Ideally, a tracedpacket would be timestamped at the
precise instant it arrives. However, trace-collection
systemsbuffer packets at least briefly (often in sev-
eral places) before attaching a timestamp,andpackets
areoften collectedat several nearby points (e.g., two
packet monitors on both members of a pair of simplex
links), which introduces timestamperrors due to im-
perfect clock synchronization. Erroneoustimestamps
couldcauseerrorsin ouranalysisby affectingeither or
both of ourRTT estimatesand our latencyestimates.

We estimated the numberof packets lost within our
measurement systemby watching for gaps in the TCP
sequencenumbers. This could overestimate losses(e.g.,
due to reorderedpackets) but theestimates, as reportedin
Table 2, arequite low.

Table 2 also shows our estimates (based on a separ-
ate Bro script) for packet retransmission rateson the path
between client and server, implied by packets that cover
part of the TCP sequence space we have already seen.
Retransmissions normally reflect packet lossesin the In-
ternet, which would invalidate the model usedin equa-
tion 1. Knowing theserates could help understandwhere
theinitial-RTT approach is applicable.

Note thatTable 1 only includesconnectionswith at least
one complete HTTP response, while Table 2 includesall



Total Total Measurement Retransmitted Conns. w/ Conns.w/nopkts
Tracename packets Conns. systemlost pkts. packets retransmittedpackets in one direction

C2 40474900 1182499 17017 (0.04%) 114911 (0.3%) 53906 (4.6%) 572052(48.4%)
R2 2824548 43023 1238 (0.04%) 27140 (1.0%) 4478(10.4%) 460 (1.1%)
U2 11335406 313462 5611 (0.05%) 104318 (0.9%) 26815 (8.6%) 17107 (5.5%)
U3 11924978 328038 2093 (0.02%) 89178 (0.7%) 26371 (8.0%) 14975 (4.6%)
U4 14393790 384558 5265 (0.04%) 110541 (0.8%) 30638 (8.0%) 18602 (4.8%)

Table 2: Packet lossrates

connections, including thosethat endin errors. We were
only ableto use27% of the connections listedin Table2
for C2, partly becauseweonly sawpacketsin onedirection
for 48%of theconnections.Our analysisscript flaggedan-
other X 20%of theC2connectionsaserro r has occurred,
possibly dueto unknown problemsin themonitoring infra-
structure.

4 Predictions based on initial RTT: results
In this section, we summarize the results of our exper-

iments on techniques to predict transferlatency using the
initial RTT. We addressthesequestions:

1. DoesRTT per secorrelatewell with latency?
2. How well doesequation1 predictlatency?
3. Can we improve onequation1?
4. What is theeffect of modemcompression?
5. How sensitive are the predictions to parameter

choices?
Thereisno singleway to definewhatit means for alatency
predictor to provide “good” predictions. We evaluatepre-
diction methods using several criteria, including the cor-
relation between predictedand measuredlatencies,andthe
mean andmedian of thedif ferencebetween the actual and
predictedlatencies.

4.1 DoesRTT itself correlate with latency?
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Figure 5: Scatter plot of bandwidthvs. RTT, traceC2

Perhaps it is unnecessaryto invoke the full complexity
of equation 1 to predict latencyfrom RTT. To investigate
this,we examined thecorrelation betweenRTT per seand
eitherbandwidth or latency.

For example, Figure5 showsa scatterplot of bandwidth
vs. initial RTT, for all status-200 responses in trace C2.
(In order to avoid oversaturating our scatter plots, we ran-
domly sampled the actualdatain each plot; the sampling
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Figure6: BW vs.RTT, traceC2,1 MSS Z length Z 32KB

ratios areshown in the figures.) The graph shows an ap-
parent weak correlation between initial RTT and transfer
bandwidth. Corresponding scatter plots for R2, U2, U3,
andU4 show even weaker correlations.

Wefoundastrongercorrelationif wefocusedon transfer
lengths above oneMSSand below 32K bytes,as shown in
Figure 6. Our techniquefor measuring latency is probably
leastaccuratefor responsesbelow oneMSS(i.e., thosesent
in justone packet). Also, single-packetresponsesmaysuf-
fer excessapparent delay(as measuredby whenthe server
receives the final ACK) becauseof delayed acknowledg-
mentat the client. In our subsequentanalyses,we exclude
responseswith lengthsof oneMSSor lessbecauseof these
measurement difficulties. The 32KB threshold represents
oneplausible choicefor defininga “short” transfer.

Trace Samples Correlation Correlation
name included w/bandwidth w/latency
C2 140234(24.3%) -0.352 0.511
C2p 129661(24.3%) -0.370 0.508
R2 7500(18.7%) -0.112 0.364
R2p 5519(17.6%) -0.054 0.418
U2 218280(37.6%) -0.163 0.448
U2p 181180(37.8%) -0.178 0.458
U3 234591(36.8%) -0.181 0.421
U3p 181276(36.9%) -0.228 0.427
U4 283993(37.2%) -0.179 0.364
U4p 219472(37.3%) -0.233 0.411

(a) 1 MSS [ length [ 8KB

Trace Samples Correlation Correlation
name included w/bandwidth w/latency
C2 261931(45.4%) -0.325 0.426
C2p 238948(44.8%) -0.339 0.426
R2 20546(51.4%) -0.154 0.348
R2p 15407(49.0%) -0.080 0.340
U2 312090(53.7%) -0.165 0.392
U2p 258049(53.8%) -0.179 0.401
U3 336443(52.8%) -0.162 0.263
U3p 259028(52.7%) -0.215 0.276
U4 414209(54.2%) -0.167 0.287
U4p 320613(54.4%) -0.215 0.343

(b) 1 MSS [ length [ 32KB

Table3: Correlations: RTT vs. eitherbandwidthor latency



For a more quantified evaluation of this simplistic ap-
proac\ h, we did a statisticalanalysis using a simple R [18]
program. Theresults areshown in Table 3(a) and (b), for
lengths limited to 8K and32K bytes,respectively.

Thetablesshow rowsfor both pruned and unpruned ver-
sionsof thefive basic traces. We includedonly status-200
responseswhoselength wasatleastoneMSS;the“samples
included” columnshows thatcount for eachtrace. Thelast
two columns show the computedcorrelation betweenini-
tial RTT andeither transfer bandwidth or transferlatency.
(The bandwidth correlations arenegative, becausethis is
aninverserelationship.)

For the data set including response lengths up to 32K
bytes,noneof thesecorrelationsexceeds0.426, and many
aremuch lower. If we limit the response lengths to 8K
bytes, the correlations improve, but this also eliminates
mostof thesamples.

We tried excluding samples with an initial RTT value
above some quantile, on the theorythathigh RTTs correl-
ate with lossy network paths;this slightly improves RTT
vs. bandwidthcorrelations(for example, excluding records
with anRTT above 281 msec reducesthe number of 32K-
or-shorter samples for R2 by 10%,andimprovesthat cor-
relation from -0.154to -0.302) but it actually worsensthe
latencycorrelations(for the same example,from 0.348 to
0.214).

Note that, contrary to our expectation that tracespruned
of proxiesand robots would be lesspredictable, in Table 3
this seemstrue only for the R2 trace; in general, prun-
ing seemsto slightly improve predictabili ty. In fact,while
we present results for both prunedand unpruned traces
throughout the paper, we seeno consistent dif ferencein
predictability.

4.2 Doesequation 1 predict latency?
Although we did not expect RTT to correlate well with

latency, we might expect better results from the sophist-
icated model derived by Cardwell et al. [2]. They valid-
ated their model (equation 1 is a simplified version) using
HTTP transfersover theInternet,but apparently used only
“well-connected” clients andsodid not probeits util ity for
poorly-connected clients. They also used RTT estimates
thatincludedmoresamplesthanjusteachconnection's ini-
tial RTT.

We thereforeanalyzed the abil ity of equation 1 to pre-
dict transferbandwidths andlatencies usingonly the ini-
tial RTT, andwith the belief that our tracesincludesome
poorly-connectedclients.

Figure 7 shows an examplescatter plot of measured
latencyvs. predicted latency, for traceC2. Again, we in-
cludeonly status-200responsesat leastoneMSSin length.
We have superimposedtwo curves on theplot. (Sincethis
is a log-log plot, most linear equations result in curved
lines.) Any point abovetheline ]_^a` representsan under-
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Figure 7: Real vs. predictedlatency, traceC2

predictionof latency; underpredictionsare generally worse
thanoverpredictions,if (for example) wewant to avoid ex-
posing Webusersto unexpectedly long downloads. Most
of the points in the plot are above that line, but mostare
below thecurve ]�^/`:mon�ehg�p'q'r , implying thatmostof the
overpredictions (in this example)arelessthan1 secin ex-
cess. However, a significantnumber aremany seconds too
high.

Weextended ourR programto compute statistics for the
predictive ability of equation 1. For eachstatus-200 trace
record with a length between one MSS and 32K bytes,
we used the equation to predict a latency, andthen com-
pared this to the latency recorded in the trace record. We
thencomputed thecorrelation betweentheactual andpre-
dicted latencies.We alsocomputeda residual error value,
as the difference between the actual and predicted laten-
cies. Table 4 shows the results from this analysis, usingc ^sntehu and i jv^sn , a parameterassignmentthat worked
fairly well acrossall five traces.

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 261931 (45.4%) 0.581 -0.017 0.164
C2p 238948 (44.8%) 0.584 -0.015 0.176
R2 20546 (51.4%) 0.416 -0.058 0.261
R2p 15407 (49.0%) 0.421 -0.078 0.272
U2 312090 (53.7%) 0.502 -0.022 0.110
U2p 258049 (53.8%) 0.519 -0.024 0.124
U3 336443 (52.8%) 0.334 -0.018 0.152
U3p 259028 (52.7%) 0.353 -0.016 0.156
U4 414209 (54.2%) 0.354 -0.013 0.141
U4p 320613 (54.4%) 0.425 -0.010 0.136

Residual valuesaremeasuredin seconds; 1 MSS w length w 32KB

Table 4: Quali ty of predictions based on equation 1

In Table4, themedian residualsarealwaysnegative, im-
plying that equation 1 overestimates the transferlatency
more often than it underestimates it. However, the mean
residualsare always positive, becausethe equation's un-
derestimates aremore wrong (in absolute terms) than its
overestimates. Thesamplesin Figure7 generally follow a
line with a steeper slope than ]-^�` , suggesting that equa-
tion 1 especially underestimateshigher latencies.

Onepossible reasonis that, for lower-bandwidth links,
RTT dependson packet size. For a typical 56Kb/s mo-
dem link, a SYN packet wil l seeanRTT somewhatabove



100 msec, while a 1500 byte data packet wil l seeanRTT
sevx eral times larger. This effect could causeequation 1 to
underestimatetransfer latencies.

4.3 Can we improve on equation 1?
Given that equation 1 seems to systematically underes-

timatehigher latencies,exactly the error that we want to
avoid, we realized that we could modify the equation to
reduce theseerrors.

We experimented with several modifications, including
a linearmultiplier, but onesimple approachis:

function ModifiedEqnOne(RTT, MSS,Length,ykz ,{ , CompWeight)
temp= EquationOne(RTT, MSS,Length, y z , { );
return(temp + (temp*temp*CompWeight));

That is, we “overpredict” by a term proportional to the
squareof theoriginal prediction. This is aheuristic, not the
result of rigorous theory.

We found by trial and error that a proportionality con-
stant, or “compensation weight,” | }�~����a�'�����������������
worked best for C2, but | }�~��*�a�$�����������'����� worked
better for R2 U2, and |3}�~_�*�a�$�����f�v�8�'����� worked best
for U3 and U4. For all traces, ����� got the bestresults,
andweset �3�k�o� for C2andU2, and �3�k�a� for R2,U3,
andU4. We discuss the sensitivity to theseparametersin
Section 4.5.
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Figure 8 shows how the modified prediction algorithm
systematically overpredictsat higher latencies, while not
significantly changing the accuracy for lower latencies.
(For example, in this figure, | }�~����a�'�������¢�£���h��� ; if
equation 1 predicts a latencyof 0.100 seconds, the mod-
ified prediction wil l be 0.1225seconds). However, even
the modified algorithm significantly underpredicts a few
samples;we do not believe we can avoid this, especially
for connections that suffer packetloss(seeTable 2).

Table5 showsthat themodificationsto equation 1 gener-
ally worsenthe correlations, compared to thosein Table 4,
but definitely improves theresiduals– themedian error is
alwaysless than 100msec, and themean error is lessthan
15 msec, except for traces U3p and U4p (our parameter
choiceswere tuned for theunpruned traces).

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 261931 (45.4%) 0.417 0.086 -0.002
C2p 238948 (44.8%) 0.423 0.092 -0.006
R2 20546 (51.4%) 0.278 0.015 0.002
R2p 15407 (49.0%) 0.311 0.019 0.013
U2 312090 (53.7%) 0.386 0.053 0.010
U2p 258049 (53.8%) 0.402 0.056 0.001
U3 336443 (52.8%) 0.271 0.034 0.011
U3p 259028 (52.7%) 0.302 0.036 -0.020
U4 414209 (54.2%) 0.279 0.035 0.003
U4p 320613 (54.4%) 0.337 0.038 -0.033

Residual valuesaremeasuredin seconds; 1 MSS ¤ length ¤ 32KB

Table5: Predictions based on modified equation 1

4.4 Text content and modemcompression
Many people stil l usedialup modems. It has been ob-

served that to accurately model path bandwidth, onemust
account for thecompressiontypically doneby modems[3].
However, most image Content-Types are already com-
pressed,so this correction should only be done for text
content-types.

HTTP responsesnormally carry a MIM E Content-Type
label, whichallowed usto analyzetracesubsetsfor “text/*”
and“image/*” subsets. Table6 shows the distribution of
thesecoarseContent-Type distinctionsfor thetraces.

Wespeculatedthatthelatency-predictionmodelof equa-
tion 1, which incorporatesthe responselength, could be
further improved by reducing this length value whencom-
pression might be expected. (A server making predictions
knows theContent-Typesof theresponses it plansto send.
Some serversmight usea compressed content-coding for
textresponses,whichwould obviatetheneedto correctpre-
dictionsfor those responsesfor modemcompression. We
foundno suchresponsesin our traces.)

We cannot directly predict either the compressionra-
tio (which varies among responsesand among modems)
nor can we reliably determine which clients in our traces
used modems. Therefore, for feasibility of analysis our
model assumes a constant compressibili ty factor for text
responses, and we testedseveral plausible values for this
factor. Also, weassumedthatan RTT below 100msecim-
plied a non-modemconnection,andRTTsabove 100msec
implied the possible useof a modem. In a real system,
information derivedfrom the client addressmight identify
modem-usersmorereliably. (In Section 5 we classifycli-
ents using hostnames; but this might addtoo much DNS-
lookupdelayto beeffective for latencyprediction.)

Table7 shows results for text content-typesonly, using
themodified prediction algorithm based onequation 1, but
without correcting for possible modem compression. We
set ���¥�f� � for C2 andU2, and �¢�8���h� for R2, U3, and
U4; � � ��� for C2 and � � �¦� for the other traces; and| }�~����a�'�����f�-�§� for all traces. (We have not testeda
wide rangeof |3}�~ ���a�'������� values to seeif text content-
typeswould benefit fromadifferent | }�~����a�'������� .) Com-
paredto the results for all content types(seeTable 5), the
residualsfor text-only samplesaregenerally higher.



Content-type C2 R2 U2 U3 U4

Unknown 3 (0.00%) 26 (0.06%) 178 (0.03%) 157 (0.02%) 144(0.02%)
TEXT/* 122426 (21.22%) 23139 (57.83%) 85180(14.67%) 92108 (14.45%) 107958 (14.14%)
IMA GE/* 454458 (78.78%) 13424 (33.55%) 465160(80.10%) 507330 (79.60%) 607520 (79.57%)
APPLICATION/* 0 (0.00%) 3410 (8.52%) 29733 (5.12%) 37581 (5.90%) 47765(6.26%)
VIDEO/* 0 (0.00%) 4 (0.01%) 17 (0.00%) 10 (0.00%) 5 (0.00%)
AUDIO/* 0 (0.00%) 8 (0.02%) 446 (0.08%) 194 (0.03%) 140(0.02%)

Table 6: Countsand frequency of content-types(excludingsomerarely-seentypes)

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 118217 (96.6%) 0.442 0.142 0.002
C2p 106120 (96.4%) 0.449 0.152 -0.003
R2 12558 (54.3%) 0.288 0.010 0.066
R2p 8760 (50.2%) 0.353 0.017 0.105
U2 70924 (83.3%) 0.292 0.100 0.073
U2p 56661 (83.0%) 0.302 0.110 0.066
U3 76714 (83.3%) 0.207 0.063 -0.021
U3p 56070 (83.2%) 0.198 0.072 -0.099
U4 90416 (83.8%) 0.281 0.065 -0.034
U4p 65708 (83.8%) 0.359 0.078 -0.122

Residual valuesaremeasuredin seconds; 1 MSS ¨ length ¨ 32KB

Table 7: Predictionsfor text content-types only

Trace Samples Compression Correlation Median Mean
name included factor w/latency residual residual

C2 118217 1.0 0.442 0.142 0.002
C2p 106120 1.0 0.449 0.152 -0.003
R2 12558 4.0 0.281 0.013 0.002
R2p 8760 4.0 0.345 0.021 0.044
U2 70924 3.0 0.295 0.083 0.008
U2p 56661 3.0 0.306 0.096 -0.004
U3 76714 4.0 0.208 -0.002 0.001
U3p 56070 4.0 0.201 0.003 -0.063
U4 90416 4.0 0.277 -0.000 -0.011
U4p 65708 4.0 0.353 0.007 -0.083

Residual valuesaremeasuredin seconds; 1 MSS ¨ length ¨ 32KB

Table8: Predictionsfor text with compression

Table8 showsresults for textcontent-typeswhenweas-
sumed that modems compress theseby the factor shown
in the third column. Note that for C2 and C2p, we got
thebestresults using a compressionfactor of 1.0– that is,
without correcting for compression. For the other traces,
correcting for compression did givebetterresults. Herewe
setthe other parametersas: ©�ªF« (exceptfor U3 andU4,
where ©�ª¬�®°¯ worked best), ±3²kª³¬ (exceptfor C2, where± ² ªN« worked best), and ´ µ�¶�·*¸a¹$º�»�¼�½-ª¾¬�® ¿ (except
for R2, where ´3µ�¶_·*¸a¹$º�»�¼f½�ª¾«�®�«�¯ worked best). We
experimentedwith assuming that the path did not involvea
modem (andthusshould not be correctedfor compression)
if the initial RTT wasunder100 msec, but for R2 and U2
it turnedout that we got thebest results whenwe assumed
thatall text responsesshould becorrectedfor compression.

Table8 shows that, exceptfor trace C2, correcting for
modem compression improves the mean residuals over
thosein Table 7. We have not evaluatedthe useof com-
pression factors other thanintegers between 1 and4, and
we did not evaluate a full range of ´3µ�¶�·�¸o¹�º�»�¼f½ values
for this section.

Imagecontent As shown in Table6, imagecontent-types
dominatemostof thetraces,exceptfor R2. Also, Website

designersaremore likely to have choicesbetween rich and
simplecontent for imagetypesthan for texttypes. (Design-
ersoften includeoptional “Flash”animations, but wefound
almostno Flashcontent in C2 and R2, and relatively li ttle
in U2, U3, andU4.) We therefore comparedthepredictab-
ili ty of transferlatenciesfor imagecontent-types, but found
no clear difference comparedto the results for all content
in general.

4.5 Sensitivity to parameters
How sensitive is prediction performanceto the para-

meters© , ± ² , and ´ µ�¶_·*¸a¹$º�»�¼f½ ? That question can be
framedin severalways: how do the results for oneserver
vary with parametervalues?If parametersarechosenbased
on traces from server X, do they work well for server
Y? Are the optimal values constant over time, client sub-
population, content-type,or responselength? Do optimal
parameter values dependon the performancemetric? For
reasonsof space, we focuson the first two of theseques-
tions.

Figure 9 shows how the absolute valuesof the mean
andmedian residuals vary with © , ±3² , and ´Àµ�¶�·*¸a¹$º�»�¼f½
for traces C2, R2, and U2. Theoptimal parameterchoice
depends on whether one wantsto minimize the mean or
the median; for example, for R2, ©�ªÁ«f®°¿ , ± ² ªÁÂ , and´ µ�¶�·�¸a¹'º�»�¼f½kª¬'®hÃ�¯ yieldsanoptimal meanof 1.5msec
(and a median of 15 msec). Themedian can befurtherre-
duced to 0.2 msec, but at thecostof increasing themean to
overhalf a second.

Figure 9 also shows how the optimal parametersvary
acrossseveral traces. (Results for traces U3 andU4 are
similar to thosefor U2, and are omitted to reduce clut-
ter.) It appears that no single choice is optimal acrossall
traces,although somechoices yield relatively smallmean
andmediansfor many traces.For example, ©�ªa« , ± ² ª/Â ,
and ´3µ�¶�·�¸a¹�º�»�¼f½vª¥¬�® «�¯ yieldsoptimal or near-optimal
mean residualsfor U2, U3, and U4, anddecentresults for
C2.

4.6 Training and testingon different data
The results we have presented so far used parameter

choices “trained” on thesamedatasets as our results were
tested on. Sinceany real prediction systemrequires ad-
vance training, we alsoevaluatedpredictionswith training
andtesting ondifferentdatasets.

Our trace collection was not carefully designed in this
regard;we have no pairsof data sets that arecompletely
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Figure9: Sensitivity of residual absolutevaluesto parameters, 1 MSS Ì length Ì 32KB (notedifferent y-axisscales)

identical and adjacent in time. For the C2, R2, and U2
data sets,we chosethefirst threedaysasthe training data
set,and the last four days asthetesting dataset. However,
becausewe collected data at differenthours on each day,
andbecausethereareday-of-weekdif ferencesbetweenthe
trainingandtestingsets(thetestingsetsincludestwo week-
enddays), wesuspect that thesepairsof datasetsmightnot
besufficiently similar. Wealsoused theU3 datasetto train
parametersthatwethentested ontheU4 dataset;thesetwo
tracesaremoresimilar to eachother.

Trainedparameters Testingresults
residual rank

Trace Comp in (of best
name Í Î�Ï Weight training 96) residual resid.

C2 2.0 4 2.50 -0.000 15 -0.098 -0.004
C2p 2.0 3 1.75 -0.004 12 -0.089 -0.002
R2 1.5 4 1.50 -0.004 20 0.136 0.000
R2p 1.5 3 1.00 0.003 16 0.125 0.003
U2 1.5 4 1.50 0.001 10 -0.072 0.012
U2p 2.0 2 0.75 -0.004 9 -0.081 -0.002
U3U4 2.0 2 0.75 -0.007 3 -0.013 0.003
U3U4p 2.0 1 0.25 0.000 2 -0.013 -0.010

Residual valuesaremeasuredin seconds; 1 MSS Ð length Ð 32KB

Table 9: Trainingand testing on different data

Table9 shows results for training vs. testing. We tested
andtrainedwith 96 parameter combinations, basedon the
two possible choices for Ä , the four choices for Ñ3Ò , and
twelve equally-spaced choices for Ó3Ô�Õ Ö�×aØ'Ù�Ú�Û�Ü . The
trained parameters are thosethat minimize the absolute
valueof themean residual in trai ning. Thecolumnsunder
testing results show how theresultsusingthetrainedpara-
metersrank amongall of the testing results, the mean re-
sidualwhenusing thoseparameters,and theresidualfor the
bestpossible parametercombination for thetesting data.

Theseresults suggestthat the degree to which training
cansuccessfully select parametervalues might vary signi-
ficantly from site to site. Basedon our traces, we would

have had themost successmaking useful predictions at the
University site (U3-U4), and the least successat the Re-
search site (R2).

However, the dif ference in “ trainability” that we ob-
servedmight insteadbetheresultof themuch closermatch
betweentheU3 andU4 datasets,comparedto thetime-of-
day andday-of-week discrepanciesin the other train/test
comparisons.ForC2, R2, andU2, wetried training juston
one day (Tue., May 4, 2004) andtesting on the next day,
and got significantly better trainability (except for R2p,
whichwasslightly worse)thanin Table9; thissupports the
needto matchtraining and testing datasetsmorecarefully.

4.7 A server'sdecision algor ithm
To understand how a server might usethe initial-RTT

approach in practice, Figure 10 presentspseudo-codefor
generating predictions. (This example is in thecontext of
aWebserveradapting its content based on predictedtrans-
fer latency, but the basic idea should apply to other con-
texts.) If the server has Ý�ÞsÆ choicesof response length
for a givenrequest,it would invokePredictLatency ÝNß/Æ
times,starting with thelargestcandidateandmoving down
in size, until it either finds one with a small-enough pre-
dicted latency, or has only onechoice left. Thefirst three
argumentsto thePredictLatencyfunction (RTT, MSS,and
client IP address)areknown assoonas the connection is
open. The last two (responsecontent type and length) are
specific to a candidateresponsethattheservermightsend.

Thefunction ProbablyDialup, notshown here,is aheur-
istic to guess whether a client is connected via a modem
(which would probably compresstext responses). It could
simply assumethat RTTs above 100 msecare from dia-
lups, or it could use additional information basedon the
client's DNS nameor AS (AutonomousSystem) number
to identify likely dialups.



1. functi on
PredictLatency(RTT, MSS, ClientIP, ContentType,Length)

2. if (ProbablyDialup(ClientIP, RTT)
and (ContentType àGà TEXT)) then

3. effectiveLength á à Length/TextCompressionFactor;
4. else
5. effectiveLength á à Length;
6. end

7. if (length â maxPredictableLength) then
8. return(NO PREDICTION); /* probably leaves slow-start */
9. elseif (length ã MSS) then
10. return(NO PREDICTION); /* only onedatapacket to send */
11. end

12. return(ModifiedEqnOne(RTT, MSS, Length, äæå , ç ,
CompWeight));

è�éëê�ìîí�ï�ðÀñóò5é5ô�ô�õ�ïëö�÷�ø$ùúì�ïëò
is anestimateof the meancompressionra-

tio for modemson text files;í�ïëðûñ�üÉé�õþý$ÿ�ì
. ä¡å , and ç could themselves vary based on the server's

observationof recenthistory, theContentType,etc.

Figure 10: Pseudo-codefor thedecisionalgorithm

5 Detecting dialups
We speculatedthata server could discriminate between

dialups and non-dialups using clues from the client's
“ful ly-qualified domain name” (FQDN). We obtained
FQDNs for about 75% of the clientsin the U4 trace, and
thengrouped themaccording to clues in the FQDNsthat
implied geography and network technology. Note that
many could not be categorizedby this method, and some
categorizationsarecertainly wrong.

Category Conns. 5%ile median mean 95%ile
By geography

All 326359 0.008 0.069 0.172 0.680
N. America 35972 0.003 0.068 0.124 0.436
S.America 2372 0.153 0.229 0.339 0.882
Europe 12019 0.131 0.169 0.262 0.717
Asia-Pacific 9176 0.165 0.267 0.373 0.885
Africa 2027 0.206 0.370 0.486 1.312

”Dialup” in FQDN
All 11478 0.144 0.350 0.664 2.275
Regional 5977 0.133 0.336 0.697 2.477
Canada 1205 0.208 0.460 0.751 2.060
US 575 0.189 0.366 0.700 2.210
Europe 566 0.183 0.216 0.313 0.861

”DSL” in FQDN
All 59211 0.003 0.023 0.060 0.210
Local 1816 0.011 0.022 0.034 0.085
Regional 47600 0.009 0.018 0.032 0.079
US 1053 0.071 0.085 0.117 0.249
Europe 118 0.148 0.162 0.178 0.313

”Cable” in FQDN
All 6599 0.039 0.077 0.132 0.338
Canada 2741 0.039 0.055 0.088 0.222
US 585 0.072 0.086 0.094 0.127
Europe 600 0.143 0.155 0.176 0.244

Times in seconds;bold entriesare ������� sec.

Table 10: RTTsby geography andconnection type

Table10showshow initial RTTsvary by geography and
connection type. For the connections that we could cat-

egorize, at least95% of “dialup” connections have RTTs
above 100 msec, andmost“cable” and“DSL” connections
haveRTTsbelow 200msec. Theseresultsseemunaffected
by further geographical subdivision, and support the hy-
pothesis that a threshold RTT between 100 and 200 msec
would discriminate fairly well betweendialup and non-
dialup connections. We do not know if theseresults apply
to other traces.

6 Predictions from previous bandwidths:
results

In this section, we compare how well prediction based
on variantsof equation 1 compareswith predictions from
theolderrecent-transfersapproach.Weaddresstheseques-
tions:

1. How well canwepredictlatency from previous band-
width measurements?

2. Doesacombinationof thetwoapproachesimproveon
eitherindividualpredictor?

Note that the recent-transfersapproachcannot specific-
ally predict thelatencyfor the very first transferto a given
client,becausetheserverhasnohistoryfor that client. This
is a problem if the goal is to provide thebestuser experi-
encefor a client's initial contactwith a Website. For ini-
tial contacts,aserver usingtherecent-transfersapproachto
predict latencyhasseveral options,including:� Makeno prediction.� “Predict” the latency based on history across all

previous clients; for example, use an exponentially
smoothed meanof all previoustransferbandwidths.� Assumethat clients with similar network locations,
based on routing information, have similar band-
widths; if a new client belongs to “cluster” of clients
with known bandwidths, use history from that cluster
to make a prediction. Krishnamurthy and Wang [8]
describe a technique to discover clustersof client IP
addresses. Krishnamurthy and Wil ls [9] thenshowed,
using a setof chosenWeb pageswith variouscharac-
teristics,thatclustering paysoff in predictionaccuracy
improvements ranging up to about 50%. We speculate
that thisapproachwould alsowork for our traces.� Usetheinitial-RTT techniqueto predict aclient'sfirst-
contactlatency, and usetherecent-transferstechnique
to predict subsequent latenciesfor eachclient. We call
this thehybrid technique.

Wefirst analyzethepurestformof recent-transfers(making
no prediction for first-contact clients), and then consider
themean-of-all-clients andhybrid techniques.

6.1 Doespreviousbandwidth predict latency?
We did a statistical analysis of the prediction abil ity of

several variants of the pure recent-tranferstechnique. In
each case, we madepredictions and maintained history
only for transfer lengths of at least one MSS. Table 11



Correlation with
most mean weighted

Trace Samples recent previous mean
name included bandwidth bandwidth bandwidth

C2 262165 (45.4%) 0.674 0.742 0.752
C2p 238957 (44.8%) 0.658 0.732 0.737
R2 24163 (60.4%) 0.589 0.655 0.666
R2p 17741 (56.5%) 0.522 0.543 0.579
U2 310496 (53.5%) 0.527 0.651 0.654
U2p 254024 (52.9%) 0.437 0.593 0.561
U3 341968 (53.7%) 0.495 0.627 0.638
U3p 260470 (53.0%) 0.508 0.659 0.625
U4 421867 (55.3%) 0.521 0.690 0.647
U4p 323811 (55.0%) 0.551 0.690 0.656

Bestcorrelationfor eachtraceshown in bold

Table 11: Correlations: measuredvs. recent bandwidths

shows the results. The first two columns show the trace
name and the number of samples actually used in the
analysis. The next threecolumns show the correlations
betweenthebandwidth (not latency)in a trace recordand,
respectively, the most recent bandwidth for the same cli-
ent, the mean of previous bandwidths for the client, and
the exponential weighted mean
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. WefollowedKrishnamurthy et al. [10]
in using

�/
103254
, although other values might work better

for specific traces.
Theseresults suggest thatsomeform of meanis thebest

variant for this prediction technique; although the choice
betweensimplemeansandweightedmeansvariesbetween
traces, thesealwaysoutperformpredictions based on just
themostprevious transfer. SinceKrishnamurthy etal. [10]
preferred the weightedmean,we follow their lead for the
restof thispaper.

Pruning the traces, as we had expected, doesseem to
decreasethepredictability of bandwidth values,except for
theU3 andU4 traces. This effect might bemagnified for
therecent-transferstechnique, since(unlikethe initial-RTT
technique) it reliesespecially on intra-clientpredictability.

Table11 showed correlations betweenbandwidth meas-
urements and predictions. To predict a response's
latency, one can combine a bandwidth prediction with
the known responselength. Table 12 shows how well
the weighted mean bandwidth technique predicts laten-
cies. Table 12(a) includesresponseswith length at least
one MSS; Table 12(b) excludes responseslonger than
32 Kbytes. Because short responses and long responses
may be limited by dif ferent parameters(RTT and bot-
tleneck bandwidth, respectively), we hypothesized that it
might not make senseto predict short-responselatencies
basedon long-response history. Indeed, the residuals in
Table 12(b) are alwaysbetterthanthe corresponding val-
ues in Table 12(a),although thecorrelationsarenotalways
improved.

Thecorrelationsin Table12(a)arebetter thanthosefrom
the modified equation 1 as shown in Table 5, except for
trace U4. However, the mean residuals in Table 12 are
muchlargerin magnitudethanin Table 5; it might bepos-

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 262165 (45.4%) 0.514 -0.042 -0.502
C2p 238957 (44.8%) 0.515 -0.046 -0.529
R2 24163 (60.4%) 0.525 -0.066 -4.100
R2p 17741 (56.5%) 0.560 -0.140 -5.213
U2 310496 (53.5%) 0.475 -0.028 -1.037
U2p 254024 (52.9%) 0.460 -0.033 -1.142
U3 341968 (53.7%) 0.330 -0.025 -1.138
U3p 260470 (53.0%) 0.374 -0.029 -1.288
U4 421867 (55.3%) 0.222 -0.021 -0.957
U4p 323811 (55.0%) 0.251 -0.024 -1.111

(a) 1 MSS 6 length

Trace Samples Correlation Median Mean
name included w/latency residual residual

C2 256943 (44.5%) 0.516 -0.038 -0.485
C2p 234160 (43.9%) 0.516 -0.043 -0.512
R2 17445 (43.6%) 0.317 -0.018 -0.779
R2p 12741 (40.6%) 0.272 -0.054 -0.959
U2 287709 (49.5%) 0.256 -0.020 -0.407
U2p 235481 (49.1%) 0.247 -0.024 -0.454
U3 314965 (49.4%) 0.447 -0.017 -0.300
U3p 239843 (48.8%) 0.484 -0.020 -0.336
U4 390981 (51.2%) 0.338 -0.015 -0.274
U4p 299905 (50.9%) 0.312 -0.017 -0.314

(a) 1 MSS 6 length 6 32KB

Table 12: Latency predictionvia weighted meanbandwidth

sible to correct thebandwidth-based predictor to fix this.
The previous-bandwidth approach consistently over-

predictslatency, whichin someapplicationsmight bebetter
thanunderprediction. Figure11 shows anexamplescatter
plot, for R2. In theWeb-server contentadaptation applic-
ation, excessive overprediction increases the chances that
a well-connecteduser wil l fail to receive rich content, al-
though this is less harmful than sending excessive content
to a poorly-connected user.
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Figure11: Real vs.bandwidth-predictedlatency, traceR2

6.2 Combining predictors
Giventhat theinitial-RTT approachseemsmoreaccurate

at predicting first-contact latencies,for many thresholds,
thantherecent-transfersapproach,wespeculated thatahy-
brid of thetwo predictors might yield the bestresults. This
hybrid would usethe modified equation 1 predictor for a
client'sfirst-contacttransfer, and thesmoothed meanof the
client's previousbandwidths for itssubsequenttransfers.



We found that theoverall (all-transfers)accuracyof this
hybr9 id is nearly indistinguishable fromtheoverall accuracy
of the recent-transfers approach because,as the statistics
in Table 1 imply, only a small fraction of transfers in our
tracesarefirst contacts.

7 Summary and conclusions
We conducted a study, based on traces from several dif-

ferentusercommunities,to demonstratehow well two dif-
ferent approachescan predict the latency of short TCP
transfers.We found that by making a minor modification
to apreviously-describedformula,we could greatly reduce
its absolute prediction errors. We showed that predictions
basedon observation of past history generally yield better
overall correlationsthanour formula-based predictor, but
theformula-basedpredictor haslower mean prediction er-
rors. We alsoshow that the formula-based predictor could
be improved to handle the specific case of text content,
where modem-basedcompressioncan affect latency. Fi-
nally, we reported results from a study on therelationship
betweenround-trip timeand theuseof modems,suggesting
thatthis relationship might be exploited to improvepredic-
tion accuracy.

This paperhasnot quantified how much a realapplica-
tion, such asa Webserver, could improve end-to-end per-
formance by using our prediction techniques. Our tech-
nical report [1] provides someadditional analysis of this
andotherdetails thatdonot fit here.
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