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Abstract

Nearly three decadeof Internetmeasurementasresultedin large-scaleglobal infrastructuresusedby an increasingnumber
of researchers.They have examinedvariousInternetpropertiesin areassuchas network infrastructure(routers,links), traffic
(measuremendt paclet, flow, and sessiorlevel) and applications(DNS, Web, P2R online social networks etc.) and presented
resultsin diversevenues.Key relatedtopicslik e securityandprivacy have alsobeenexplored. Thereis however a lack of clearly
articulatedstandardshat reducethe probability of commonmistalesmadein studiesinvolving measurementsheir analysisand
modeling. A community-wideeffort is likely to fosterfidelity in dataset®btainedfrom measurementandreusedn subsequent
studies.We presenta Socraticapproachasstepstowardsa solutionto this problemby enumeratinga sequencef questionghat
canbeansweredelatively quickly by bothmeasurerandreuserof datasetsTo illustratethe applicabilityandappropriatenessf

the questionsve answerthemfor anumberof pastandcurrentmeasuremerdtudies.
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1. Introduction

Although the Internethasbeenstudiedfor decadewith in-
creasingdiversityin the setof measurementsollectedanden-
tities studied[20], therehasbeena notablelack of preciselyar
ticulatedstandard$or suchmeasurement-drenstudies.Inher
ently the problemspaces very large: the Internetis vast,con-
stantly changing,reachesa significantfraction of the world’s
population,andis a key componenin variousaspectof daily
life. At the sametime, Internetresearcherbave diverseobjec-
tivesrangingfrom performinghighly specializedcasestudies
to developingatheoreticallysoundfoundationfor the studyof
Internet-like systems.Thus,agreemenbn a single standards
unlikely to emege quickly. We have a more modestgoal in
mind: raisethe standardgor validationof measurement-based
networking research.

This paperexpandson a HotMetrics’08 position paper[33]
thatamguedfor a practicalapproachto raisingthe bar for val-
idating measurement-basetktworking researchandto arriv-
ing ata prudentsenseof justwhatthe desiredstandardshould
be and may be ableto achieve. Elaboratingon the ideasdis-
cussedn [33], this paperoutlinessuchan approachandillus-
tratesit with a numberof differentexamples.We fully realize
thata commonly-acceptedetof standardsanonly be estab-
lishedandimplementedhrougha true communityeffort, and
the main purposeof this work is to jump-startsuchan effort
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by adwcatingan approachthat hasthe potentialof triggering
the necessargiscoursenithin the community By servingasa
“strawman”,the proposedpproachs boundto meetobjections
andactively invitesconstructve criticism so standardshatwill
ultimatelyemepgewill generallybeviewedasrealisticandspe-
cific ratherthanastoo idealisticor vague.

Trueto its “socratic” nature,our approachstartswith a sim-
plequestion:*Do theavailablemeasurementndtheiranalysis
andmodelingeffortssupporttheclaimsthatarebeingmade]in
the paperat hand]?” Surprisingly suchan obvious questionis
typically not asked beforeefforts areexpended.If the original
measurershemselesdo not askthis questionthe subsequent
usersof the paperanddataappearto fareno better Oftenthe
key detractionis that a detailedrecountingof all the potential
pitfalls in carryingout measurement&lata hygieng is painful
and severely underappreciatedhenceit is underreportedin
papergfor two text-book examplesthatillustratethe meaning
of “good” datahygiene se€]52, 58]). Issuegelatingto datahy-
gienemayseemmundanendthusarerarelydocumentedead-
ing to the databeingtaken at facevalue. Ratherthan simply
take researcherto taskwe startby refining the above question
andadwocatea Sociatic method askingresearcher answera
seriesof specificquestionsaboutthe creationor reuseof data,
andif applicableaboutits statisticalanalysisandvalidationof
the proposedmodel. The purposeof thesequestionds to ac-
tively engageesearcherto look at dataclosely examiningits
hygiene,how it wasanalyzedandwhat efforts were spenton
modeling.We focuson the differentrolesplayedby the partic-
ipants,suchasthosewho producethe dataandthosewho are
the primary consumerf the data. Obviously if the original
datagatheringwas unhygienic,the problemis compoundedf
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the consumersvereeitherunawvareof it or did not take it into

consideration.Evenwith properly gathereddatait is possible
for it to be misusedby the consumerslit shouldbe notedthat
producermndconsumegroupsmaynotintersecfor aparticular
datasebut couldeasilyoverlapfor adifferentone.Our propos-
als apply to usersin eitherrole. Our work is aimedat those
who have somebasicnetworking knowledgeand have carried
out or areinterestedn collecting measurementandor using
availabledata.

We are not the first to examinemary of the issuesabove.
For example,in the areaof mobile ad-hocnetwork simulation,
apleafor researcher® publishtheir dataandmeta-datalong
with theirresultsmodels andstatisticalanalysishasbeermade
in [37]. The paperalsoshaws that a generalreluctanceo do
so hasimpededa more openscrutiry of researchn that area
andhashurt the credibility of simulationasa researchool for
the study of mobile ad-hocnetworks. In the field of Internet
measurementggesearcherfave tried to addresshe problem
of improving the way in which datais gathered shared,and
used. For example,[53] enumerated list of stratgies, while
[3] suggestegbroperwaysfor reusingdata. Similarly, match-
ing statisticalrigor to the quality of the availabledatahasbeen
examined[61]. Othershave examinedmodelingandvalidation
effortsbeyondjust trivial datafitting exerciseq42, 62]. Meta-
dataissueshave beendiscussedd7, 53] andconcernsaboutthe
treatmentof sharedmeasurementlave beenraised[2]. The
brittlenessof metricshave beenexaminedin othercontexts as
well, e.g.,in operatingsystemg46]. We however seekto place
all of measurement-basedsearcton a strongscientific sub-
strate by a holistic examinationof measurementgheir use,
analysismodeling,andmodelvalidation.

Thelnternetresearcltommunityhasshovn anincreasingn-
terestin having moredatasetde shared SIGCOMM andSIG-
METRICS have along history of encouragingempirical-based
researchandconferencedike IMC andPAM requiredatasets
to be sharedfor a paperto be consideredor the bestpaper
award. As moreandmoredatasetdecomeavailable,the need
for improved standardsncreasesas doesthe urgeng for ap-
proachesadwcating higher standards. To this end, our goal
is to assistthe measurementesearchcommunitycreate, pop-
ulate, and maintaina repositoryof meta-dataassociatedvith
variousdatasetsisedin paperghatthey author Sucha reposi-
tory would be similar to citationrepositoriesldeally, the orig-
inal measuremwould participateandinclude enoughinforma-
tion in their paperto enableconsumergo easilygleananswers
to their questionsaboutthe resultingmeasurements Failing
that, any subsequentiserhasto answerthe questionand sug-
gestchangegmprovementdo the meta-datan the repository
Participatingin this processvould helptheconsumeatrticulate
theirassumptionslearlyandhelpfutureanalysis.

The restof the paperis divided asfollows: Section2 lists
our initial setof rulesandquestions.Section3 presentsa de-
tailed evaluationof diverseapplicationsthroughthe prism of
our questions.Section4 presentghe inferred setof steps(the
algorithm)sothatary future measurecanfollow the proposed
standardWe concludein Section5 with asummaryof our con-
tributionsandalook at future work.

2. Questions

What are the ways by which we can deconstructhe ques-
tion we raisedin Sectionl: “Do the available measurements
andtheir analysisandmodelingefforts supportthe claimsthat
are beingmade[in the paperat hand]?” We startby dividing
this questioninto threebroadsub-questionshat dealwith the
issuef datahygienedataanalysisandmodelingefforts. Al-
thoughwe discusgheseissuesseparatelyit is understoodhat
they areinter-relatedin the sensdhatdataanalysisandmodel-
ing areoften usefultoolsfor examiningthe hygieneof a given
datasetA schematigictureof our proposedsocraticapproach
is shavn in Figure 1, andthe differentpartsare discussedn
moredetailbelow.

2.1. Datahygiene

In deploying a measurementnfrastructurefor collecting
data, the collector mustlist all known deficienciesassociated
with themeasuremergrocessandthe measurementsollected.
Data hygieneis indicatedby how carefully the quality of the
measurementare checled andlies at the heartof ary poten-
tial improvementto the situationat hand. The primary way
by which hygienecanbe ensureds the propermaintenancef
meta-dataassociatedvith the measurementfs3]. The meta-
datashouldencompassll relevantinformationaboutthe data
and be examinedat ary subsequentlateto assesshe fidelity
andapplicability of the data. Typical component®f meta-data
in this contet include: what measurementechniqueswere
used,conditionsof the network at the time of datagathering,
andinformation aboutthe location of the datagathering. For
example,if thetraffic mix at the locationis heavily biasedto-
wardsWeb and P2Pwith only a tiny fraction of traffic from
Online SocialNetworks (OSNs),thenit is probablynotagood
candidatefor reusein examining the distribution of different
OSNSs.

While it is easyto stressthatall relevantinformationabout
the datagatheringprocessshouldbe recordedandstoredi,it is
unlikely to be completewithout a semi-structuredchemade-
scribingall the recordsandfields of interest. The hardestpart
of measurement-basedeta-dateand onealmostalwaysover-
looked is the needfor the creatorsof the meta-datéo include
warningsandknown limitationsaboutthereuseof thedata.For
example,informationaboutany known biasesconcernsabout
degreeof accurag, or the durationof applicability anduseful-
nessof the datashouldbe an essentiatomponentn the meta-
datadescription.In its presenceonsumerganquickly check
themeta-datanddecideif thedatacanbesafelyreusedln its
absencehereis a stronglik elihoodof consumergoing astray
Without suchmeta-datathe consumeiis likely to blindly as-
sumethat the datais of good quality. What exacerbateshe
problemis that producersand consumerdendto have differ-
entexpertiseor objectives,with theformerproducingmeasure-
mentdatatypically for a particularpurposeandthelatterusing
themoftenwith avery differentgoalin mind. Providing meta-
datawith clear semanticausing languageshat are expressve
but alsoappeato producersandconsumerslike would be one
way to alleviatethisissue.



P-Rules

1. Explain your measurement technique(s).

data analysis

S-Rules

1. Explain suitability of analysis technique(s).
2. Discuss sensitivity/robustness of analysis

2. Explain your measurement setup.
3. Provide meta-data that captures your existing
knowledge about the data measurements.

model
validation

data sets and
meta-data

C-Rules

1. Use diligence when looking for meta-data
information.

2. Use domain knowledge to add to meta-data.

3. Use meta-data to determine stretchability.

ata
analysis

>

technique(s).
3. Check results for consistency with existing
knowledge of the field.

modeling efforts

M-Rules

1. Explain your model selection criteria.

2. Detail your model validation effort.

3. Provide details of the predictive power of
the chosen model(s).

Figurel: The Socraticapproachn anutshell.

Applying properdomainknowledgecanhelpto fill in miss-
ing meta-datanformation. However, consumergannotevade
theresponsibilitieof propersecondarysagelf they intendto
usethe datafor a differentpurposethena detailedaccountof
the assumptionsnadeis essential.Internetmeasuremerdoes
notin generahave anotionof canonicabr benchmarldatasets
thatis presentin certainother scientificdisciplines. Partly it
is aresultof alack of longevity dueto rapid churnin network
conditionsas well as applicationand traftic mix. The ques-
tions relatedto datahygienefocuson the needfor a dataset
meta-datadescriptionso that meta-dataavailability becomes
the normratherthanthe exception. Using domainknowledge
to checkor enhancehe descriptionbecomeghe responsibility
of ary userof suchdata.Note thatthe questionsarerefinedby
listing descriptie key wordgphrasesuchasP- (producerjand
C- (consumeryules.

P-rules for dataproducers: Are the produceddata of suf-
ficient quality for the purposefor which they are usedin the
presentstudy?

1. Explainyour measurementchnique(s).
2. Explainyour measuremerdetup.

3. Provide meta-datahat capturesyour existing knowledge
aboutthemeasurements.

The P-rulesare essentiallyto ensurethat producersof data
clearly explain their knowledge abouttheir measurementso
the consumerganmake aninformeddecisionbeforeusingthe
dataset.So, for example,if the dataproduceruseda particular
measuremeriechniqugsaytraceroute) they canindicateits
inability to look into Layer2 clouds. An exampleof a qual-
ity metricis associatingletailedinformationin a paclet trace
datasewith the countof lost paclets, variousstatisticsabout
the burst-lengthof lossesandreasongor ary suchlossesOne
suchpaperthatwe recommends [39]; by “measuringhe mea-
surer” the authorswere able to provide minute detailsabout

pacletlossedor their datacollectioneffort thatresultedin the
well-known Bellcoretraces.By sharinginformationaboutthe
measuremensetup,consumeranay be able to gleanenough
informationto decidewhetherit would beanappropriateeuse
of the datafor their application. If the measuremensetup
supportedonly unidirectionaltraffic gathering,involved mid-
dleboxes with caches,or local configurationthat selectvely
blocked certainprotocolsor ports, then the traffic datacould
beaffected.Theextentof ary deficienciesn themeasurements
andattemptstaken to circumventthemmustbe explicit in the
meta-data. Otherwiseblind reuseof the datacould resultin
falseinferences.

There are several known problemsin providing datasets.
Some measurement@re gatheredin a closed ervironment
where it is impossibleto releasedata due to laws requiring
privagy protection. Somedatacanonly be madeavailablein
anorymizedform. In the former caseresearcherarestill obli-
gatedto provide adetailedanswetto thequestiongposedby the
P-rulesandcarefully documenthe schemaof the data. In the
latter case several efforts have beenmadeto suggestwaysby
which theanorymizeddatacanstill be usefulfor future studies
(seeChapter8 of [20] for a detaileddiscussion).

C-rulesfor consumer®f data:Are theavailabledataof suf-
ficient quality for the purposefor which they are usedin the
presentstudy?

1. Usediligencewhenlooking for meta-datanformation.
2. Usedomainknowledgeto addto meta-data.
3. Usemeta-datdo determinestretchability

TheC-rulesarebestusedatthestartof theprojectthatreuses
data.Thereusemustcloselyexaminemeta-datavhenthey are
availableandif notreverseengineetthemto the extentfeasible
and appropriate. The responsibilityof properuseof existing
datasetssolely restson the consumer Examinationof meta-
datamay revealthe expectediifetime of the data,the location



and prevalenceof specific protocolsin the traffic mix, andif

it wasassociatedoo closelywith the particulardomainwhere
it wasoriginally createdandused(e.g., WWW). Stretchability
indicateshow faranoriginal datasetanbe“stretched”"andstill

be reusedin a contet for which the datasetmay never have
beenintendedto be used.Stretchabilityis a meta-propertyhat
signifieshow applicableaqualitative propertythathasbeende-
rived from the original dataseis to the differentusageof that
dataset.

2.2. Dataanalysis

Often dataanalysistakesplacein an atmospheravherethe
datamay be unclean;yet extracting someuseful information
from it necessitatea dataanalyticapproachthat mesheawell
with the quality of the measurementsThereis no pointin us-
ing preciseandhighly sensitve statisticaltechniqguesvhenthe
dataset@reknown to have majordeficienciesWhatis needed
insteadare statisticaltools that can tolerateknown imperfec-
tions of the data. The resultingobsenedrobustnesgproperties
of the dataenhancethe meta-datalescriptionandarepotential
candidatesor measuremeritivariantsproviding critical infor-
mationfor consumers.

The key takeaways from measuremenstudies are often
broad“rules of thumb” of theform of an obsened Pareto-type
principleor 80/20-typerule (i.e.,80%of theeffectscomesrom
20% of the causes). If this is all that can be inferred from
high-variability dataof questionablequality then attemptsat
fitting a specificparameterizednodel (e.g.,a power-law type
or someotherclosed-formdistribution) would be detrimental.
The questionrelatedto analysishighlightskey differencede-
tweenanalyzinghigh- andlow-quality dataset&indwarnsthat
ignoringthe distinctionis badstatisticsandbadscience’ls the
level of statisticalrigor usedin the analysisof the data com-
mensuate with the quality of the availablemeasuements?

The S-rulesor the statisticalrulesare:

1. Explainsuitability of analysistechnique(s).
2. Discusssensitvity/robustnes®f analysisechnique(s).

3. Checkresultsfor consisteng with existing knowledgeof
thefield.

A particularstatisticof the dataor statisticaltool shouldnot
be so genericthat it provides no information. An example
of an unsuitabletechniqueshowing violation of sucha non-
informative methodologyare “size-frequeng” plots: log-log
plots where the x-axis shaws the value of somevariable of
thedata(e.g.,size,degree)andthe y-axis depictsthe frequen-
cieswith which the differentvaluesoccur The valueson both
axesare plottedon logarithmic scales. As illustratedin [42],
theseso-called“size-frequeng plots” have a tendeng to ex-
hibit a straight-linebehaior—a hallmark of apparentpower
law relationships—eenif the measurementaresamplesof an
underlying low-variability distribution (e.g., exponential)and
are thereforequite inconsistentwith power-law behaior. To
avoid making speciousclaims basedon obsened straight-line
behaior in size-frequeng plots, onejust hasto plot the same
datacumulatively; i.e., considerplots wherethe x-axis shavs

therankedvalues(e.g.,smallestvaluefirst, largestvaluelast) of

thevariablein questionandthe y-axis givesagainthe frequen-
cieswith which the differentvaluesoccur Simply examining
theresulting“rank-frequeng” plots (on double-logarithmias
well as on semi-logarithmicscales)is a significantimprove-
ment. Beforeapplyinga particulartechniqueit is importantto

know the extentto which the statisticscanvary asafunction of

the degreeof imperfectiongresenin the data. The boundsof

biasedn theresultscanoften be exploredby manipulationsof

themeasurement@ndin-depthknowledgeof therootcause®f

theerrorgimperfectionsn thedata.Sensitvity andbiasknowl-

edgewill improvethemeta-dataf thedatasetThe papemust
provide sufficientevidencethatthe resultsbasedon the statis-
tics arenotartifactsof the measurement® meetthelastof our
Srules.

2.3. Modelingefforts

Typical network-related modeling work acceptsa given
dataseblindly, ofteninferssomefirst-orderdistributionalprop-
ertiesof the dataanddetermineghe “best-fitting” model(e.g.,
distribution, temporalprocessgraph)alongwith parametees-
timates. A visual assessmertdf the quality of the fit or anap-
parentlymoreobjective evaluationinvolving somecommonly-
usedgoodness-of-fitriterion is thendone. The distributional
propertiesof the datainferred is seenas reproducedin the
modelandthusthemodelis claimedto bevalid. However, if the
dataoftencannotbetakenatfacevalue,anaccuratelescription
(i.e.,model)of thedataat handis nolongerof interest.

We have to move pastthe simpleandguarantee@xercisein
datafitting. For the samesetof distributional propertieshere
aremary diversemodelsthatfit the dataequallywell. Models
areoften consideredalid if they reproducehe samestatistics
of the datathat playeda key role in selectingthe modelin the
first place! Both modelselectionrandmodelvalidationthrough
the samedataseposesseriousstatisticalproblems.

Our radicalsuggestions to make matchingparticularstatis-
tics of thedataa non-issueandeliminatethe arbitrarinesssso-
ciatedwith determiningwhich statisticsof the datato focuson.
Next, we seekto carefully examinethe modelin termsof what
new typesof measurements identifiesthat are eitheralready
available (but have not beenusedin the presentcontext) or
couldbe collectedandusedto checkthe validity of the model.
New implies entirely new typesof data,with differentseman-
tic content thathave not playedany rolein theentiremodeling
procesaup to this point. Theresultingmeasurementareonly
usedfor the purposeof modelvalidation! Sucha statistically
cleanseparatiorbetweerthe datausedfor modelselectionand
the datausedfor modelvalidationis aliento mostof today's
network-relatedmodels.This bringsusto the modelingrelated
questionandthe keywordscoveringthe correspondingnodel-
ing rules: Doesmodelvalidation reduceto showingthat the
proposedmodelis able to reproducea certain statistic of the
availabledata, andif so, whatcriteria havebeenusedto rule
out alternatemodelsthat fit the givendataequallywell?

TheM-rulesare:

1This re-iterateghe “closing-the-loop"argumentin [62].



1. Explainyour modelselectioncriteria.

2. Detail your modelvalidationeffort.

3. Provide details of the predictve power of the chosen
model(s).

The M-rulestry to ensurethatmodelingapproachesespect
thedesignedatureof thesystemtheengineeringntuition that
exists aboutits parts, and are fully consistentwith available
measurement®.qg.,seethefirst-principlesapproacto model-
ing the Internets routerlevel topologydescribedn [41]). Just
astheanalytictechniquesliscusse@bove, the producednod-
els must have strongrobustnesgropertiesagainstthe known
shortcomingf the data. Being insensitie to the conditions
underwhich the datawas collected, its size, and durationis
essential.As discussedn [61], this is especiallyimportantin
situationswherethesizeof the dataor durationof the datacol-
lection effort aresomevhatarbitraryandhenceshouldplay no
role in the modelselectionprocess—héng accesto moreor
lessdatashouldprimarily impactthe confidencentervalsasso-
ciatedwith the estimatef the model parametershut not the
choiceof themodel.

3. Evaluation

We now presentactualpapersasexemplarsof our examina-
tion of standard®f measurementie try to coverareasonable
spanof areaschoosingdatasetshatarereasonablyvell known
and have had somavhat significantimpact. The areaschosen
typically involve datasetsve arefamiliar with —we wereeither
consumergSection3.1), interestebbseners(Section3.2), or
original producergSection3.3) — anda numberof the papers
discussedbelow includeoneor moreof theauthorsof this study
asco-authors.Our goalis to provide the readerswith concrete
guidelinesof how to carryoutasimilar analysisn their areaof
interest.Ourgoalis not to discreditany of the papersor authors
cited but to use specificaspectsf their work asillustrations
of the usefulnessand appropriatenessf our list of questions
in searchfor improved standardgor measurement-drennet-
working research.

We explore two differentpathsto evaluateour setof ques-
tions. Thefirstoneis aview from atopic pointof view; in terms
of how measurementis a particularimportantareahave been
carriedout over the yearsandthe impactof primary datasets.
We chosetwo areas:topology modelingandwireless. Topol-
ogy modelingis one of the most studiedareaswith multiple
datasetsand approachesand one that hasspavned numerous
sub-area®f researchn routing and architecture.lt is impor-
tantto notethatobtainingaccuratdnternetconnectvity-related
measurementss generallyhard except for thoseresearchers
who have accesdo large ISPs. Wirelesswas chosendue to
its dramaticincreasen importancgustin thelastfew years.

The secondpaththatwe take is to pick a populardataseand
do aforwardtraversaltracingall the reuseof thatdataset.The
datasetn questionhasbeenreusedn over a hundredpublica-
tions. Althoughwe don’t examineall of the paperswe selecta
subseamongthemasgoodandbadexamplesof how well they
have reusedhe dataandmadeproperinferences.

Finally, we usean evolving new area,that of Online Social
Networks (OSNSs),asa differentkind of example. As this area
is still in its early stagespur intentis that our proposedules
canhave a prescriptie valueasmeasurementndanalyse®n
OSNsarecarriedout. It is thusdiscussedeparatelyn the next
section.

3.1. Internettopology modeling

Internettopology modeling hasbeena very active areaof
measurement-basedsearcHor morethana decadeanddur-
ing thattime it hasspavnednumeroussub-area®f researchn
routing and architecture. Much of the publishedwork in this
arearelies on a few publicly available datasourcesthat have
resultedfrom a small numberof large-scalemeasuremengf-
forts, which in turn have deployed either of the following two
measuremertechniquesitraceroute or BGPtableinforma-
tion. While the datasetgsypically dependon the dateandsize
or extent of the measuremenstudy the key featuresof these
measuremertechniqueave largely remainedhe same.This
makesthem interestingexamplesfor examiningtheir original
useandreusein someof the seminalsubsequerdtudies.

Onesuchcasestudyconcerngheuseof traceroute-based
measurement®r inferring andmodelingthe Internets router
level topologyandis describedn detailin [33] (seealso[59]).
It demonstratesvhy in view of the P-rules, the original mea-
surementand data collection effort by Pansiotand Grad re-
portedin [51] is a commendablezarly exampleof a paperin
theareaof measurement-baséuternetresearcthatprovidesa
thoroughandvery detailedmeta-datalescriptionandhasstood
thetestof time. In particulat [51] statesasexplicit purposeor
collectingthis dataseta desire“to get someexperimentaldata
on the shapeof multicasttreesone can actually obtainin [the
real] Internet..” andsaysnothingaboutits usefor inferring
the Internets routerlevel topology In this sense[51] shaws
why in termsof the C-, S-, and M -rules, someof the seminal
papersin this area(e.qg.,[23] and[1]) have becometext-book
examplesof how errorscanaddup andproducecompletelyun-
substantiatedlaims,eventhoughthey maylook quiteplausible
to non-netvorking experts.In fact,by consultingthe meta-data
descriptiongivenin [51], applyingthe C-ruleshighlightssome
basiclimitations that prevent a traceroute-basedmeasure-
ment effort from revealing the Internets routerlevel connec-
tivity to any reasonablelegree.In a nutshell,andasdiscussed
in moredetailin [59], whatmakesthe availabletraceroute-
basedneasuremenis generaliselesgor inferringrouterlevel
connectvity are: (i) systematierrorsdueto aninability to re-
solve IP aliasesandtracethroughopaquelayer2 clouds; (i)
potentialbias causedby oversamplingsomenodeswhile un-
dersamplingpthers;and(iii) inherentdifficultiescausedy the
limited numbersand locationsof vantagepoints from where
traceroute-probesanbelaunchedlIn view of this, it is very
unfortunatethat startingwith [23], the meta-datadescription
providedin [51] hasbeenlargelyignoredandforgotten;in fact,
the majority of laterpaperdn this areatypically only cite [23],
but no longer[51]. Although suchsecondarycitationsare a
well-known problem,asour exampledemonstratesn themea-
surementarenatheir impacttendsto be magnifiedas critical



informationavailablein the primary citationis often obscured
to thepointwhereit is nolongervisible in the cited work.

A secondcasestudy discussedn [33] involves the BGP-
basedmeasurementandtheir usefor inferring and modeling
the Internets AS-level topology The original datasetsretied
to anorganizationcalled TheNational Laboratory for Applied
Network Reseach (NLANR), an early NSF-fundedeffort to
characterizehe behavior of high performanceconnectiomet-
works. The NLANR projectrelied on full BGP routingtables
collectedby the RouteViews Project at the University of Ore-
gor? for the clearly articulatedoriginal purpose- “to respond
tointerestin thepart of operatorsin determininghowtheglobal
routing systemviewed their prefixesangor AS spac€ Here,
therelevantdataset€omewith essentiallyno meta-datanfor-
mation that would help subsequentisersin decidingwhether
reusingthesedatasetgor somealternatie purposesuchasin-
ferring the Internets AS-level topologyis justified. As such,
the burdenof proof restssolely with the researchergvho use
the datafor this purpose.Unfortunately the early seminalpa-
persin this area(e.g.,[23] and[1]) have adwocatedan “as is”
useof theseBGP-basedlatasetseventhoughreadily available
domainknowledgesaysotherwise—BGHs not a mechanism
by which networks distribute their connectvity, but instead,is
a protocol by which ASesdistribute the reachabilityof their
networks via a setof routing pathsthat have beenchosenby
otherASesin accordancevith their policies. As discussedfor
example,in [49, 6], usingtheseBGP datafor the purposeof in-
ferring and modelingthe Internets AS-level topologyis com-
pletely unjustifieddue to the high degree of incompleteness,
inaccurag, andambiguitythatthe dataexhibit andimpactsall
aspect®f acarefulinvestigatiorof the Internets AS-level con-
nectvity structure. Recentstudieshave also shavn that this
problemcannotberectifiedby augmentingBGP-basedtudies
of the AS-level Internetwith the availabletraceroute-based
measurementd 5, 69].

Theseobsenationshov why domainknowledgein theform
of traceroute- or BGP-specific'details” matterswhendeal-
ing with issuesrelatedto datahygiene, statisticalrigor, and
model validation. Both casestudiesare also perfectexam-
plesfor illustrating that via a combinationof our C-, S-, and
M-rules, the main sourcesof errorsand their cumulative ef-
fect can be largely eliminated. However, the efforts to suc-
ceedin this ende&or can be expectedto be significantand
will typically require(i) developinganalternatve modelingap-
proachthat makes good use of the available datasetslespite
theirknown shortcomingsndlimitations, (i) no morearguing
for the validity of a proposednodelsimply becausét is capa-
ble of matchinga particularstatisticof thedata,and(iii) putting
forward substantialand corvincing validation argumentsand
procedureqe.g., see[21]). For a relatedexampleinvolving
un-sanitizedrss. sanitizedBGP data,seethe discussiorin [17]
and[65].
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3.2. Measuementof WirelessNetworks

Therehasbeena dramaticincreasen measuremertf wire-
lessnetworks in recentyears. The considerableesourcese-
quiredto establishand maintaina measuremennfrastructure
for wirelessnetworks hasresultedin mary studiesof wire-
lessnetwork characteristicseusingdatacollectedin previous
studies.Developmentof a CommunityResourcdor Archiving
WirelessDataAt Dartmouth(CRAWDAD) [30] hashelpedad-
dressthis demand. This sectionillustrateshow our questions
andproposedulescaninform measurement-basegsearclac-
tivities in the wirelessareaand how the wirelessdomainmay
contributeto abroadeiinterpretatiorof our questionandrules.
To this end, we considerthe collectionandreuseof the most
popular datasetin the CRAWDAD repository: the data col-
lectedat DartmouthCollege[31].

3.2.1. Productionof a WirelessDataset

Wirelessnetworks posemary challengego network mea-
surement.Theseincludeinterferencecausedy otherwireless
networks andthe importanceof spatialcharacteristicsuchas
thelocationof usersbuildingsandaccesgoints(APs). These
challengesaswell asambiguitiesandlimitations of measure-
menttechniquesneedto beaddressedly producerf wireless
datasets.Measuremenstudiessuchas[25, 29] illustrate the
rigor neededvhenmeasuringvirelessnetworks,andwe focus
hereon [29] to checkthe relevanceof our P-rulesin the con-
text of the productionof awirelessdatasethathasbeenreused
numerougimes.

While [29] doesnot explicitly demonstratéhatthe produced
datais of suficient quality for the purposesfor which it is
used,the study goesto greatlengthsto ensurethe accurag
of themeasurementsThis is doneby developinga wired-side
methodologythatcombinesSNMPandsyslog measurements.
By periodically polling the APs using SNMP, the authorsare
ableto gatherinformationon theamountof datatransferredy
eachAP aswell asthelist of cardscurrentlyassociateavith the
AP. Sincerelyingon SNMP polling alonewould placelimits on
thegranularityof themobility information,theauthorsalsouse
syslog to monitormobility of thewirelessclients. Syslogdata
wasgatherediy configuringthe accespointsto sendsyslog
messagesvery time a cardauthenticatedassociatedieassoci-
ated,disassociatedyr deauthenticatefefinitionsin [29]). As
aresult,theauthorsvereableto collectmuchmoredetailedin-
formationon the interactionsetweerclient cardsandthe APs
thanwould have beenpossibleif they had only usedSNMP.
Whenplacingnetwork monitorsrunningtcpdump, the authors
werenotableto placethemsoasto capturepaclet-level traffic
for the entirewirelessnetwork (dueto the configurationof the
network). To avoid bias, the authorsattemptedo placemoni-
torsin buildingsthatwould be representatie of a wide variety
of campusauserg(e.g.,dorms library, studentcenter).Wireless-
sidemonitorswould have beenan alternatevay to avoid being
limited by configurationof thewired network.

Choosingacombinatiorof measuremeriechniquegSNMP,
syslog, andtcpdump) supportsby andlarge the authors’ar
gumentsthat their findings are valid and not simply artifacts



of the available measurementslespitesomelimitations of the
measurementw/hich the authorsdescribein detail. Specific
limitationsincludeambiguitieswhich arisewhenusingaMAC
addresgo identify a user andholesin the datawhich mayin-
troducebias into results. Theselimitations are discussedn
the papersthat characterizehis datase{25, 29 aswell asin
the CRAWDAD repository{31]. Documentingsuchlimitations
of the datacollectioneffort canbenefitboth future consumers
of the datasetaswell asfuture producersf wirelessdatasets.
Specifically the authorsnotice frequentassociationeventsin
the syslog datasets.Theseare causedby network cardsag-
gressvely searchingor the bestsignal. While makingnote of
suchbehaiors mayseemediousandorthogonato thecharac-
teristicsthe authorssoughtto measurethis informationcanbe
usedby both consumerf their syslog dataand otherswho
may usesyslog to collectdatain thefuture. Otherlimitations
not mentionedn [29] includethe absencef concurrentRSSI
measurementhatcould have helpedto understandheaggres-
sive searchingdf APs. Also not documentedrethe power set-
tings for the differentAPs, preferablywith power maps. Such
power mapsconstitutecritical metainformation for wireless
datasetshatconsumergoulduseto selectappropriatedata.

In termsof the statisticalanalysisof the dataproducedin
their measuremengtudy [29] relies predominantlyon simple
statisticssuchasCDFsandhistogramsandtakescareto mini-

mize the impactof the notedlimitations of the measurements.

Wherethe quality of their datais questionabléhe authorstake

carenot to over-analyze. Specifically the frequentcard asso-
ciationsin the syslog dataaffectstheir obsenationsof user
sessiongausingthemto obsene a large numberof shortses-
sions.This limitation is notedin thediscussiorandknowledge
of this artifactin their dataenablegshe authorsto draw appro-
priate conclusionsaboutsessiorbehaior (suchasstatingthat
sessiondendto be very short). When consideringtraffic per
day andperhour, error barsare usedto illustratethe variation
betweendaily andhourly measurementdn this sense[29] is

anexamplethatadherego our prescribeds-ruleswithout shed-
ding new light ontheirinterpretatioror possibleimitations.

3.2.2. Reuseof a WrelessDataset

Datacollectionat Dartmouthcontinuedlong after the origi-
nal studywas publishedandthe majority of this datahasbeen
madeavailableto otherresearchersThe datasenhow includes
morethan5 yearsof datacollectedfrom the campuswWLAN
at DartmouthCollege. Tracedatathathasbeenmadeavailable
includesSNMP, syslog, andtcpdump traces. Theseprovide
informationon datatransferof wirelesscardsandaccesgoints,
interactionsbetweenwirelesscardsand APs, andpaclket head-
ers,respectiely.

This datahasbeenmadeavailableonthe CRAWDAD repos-
itory which provides methodsfor datahygienerelatedtasks.
Specifically a meta-datdormatis provided whereauthorsof
datasetscan provide detailedinformation aboutthe erviron-
ment, network, methodology sanitization,and other relevant
featuresthat impact the measurements.For example, infor-
mationaboutnetwork deploymentcanbe especiallybeneficial
whendeterminingf themeasurementsreappropriatdor reuse

in anothessituation.Recentlyamethodfor evaluatingthecom-
pletenes®f wirelesstracesaftertheinitial tracecollectionhas
beendevelopedin [57]. This work is an exampleof relevant
meta-databeing elicited from measurementsafter they have
beenproduced.

Thedatacollectedat DartmouthCollege hasbeenavaluable
resourcdor researcherns diverseareaof wirelessnetworking.
This datahasbeenappliedto a wide rangeof topicsincluding
congestiorcontrolat APs[9], network security[55], anddelay
tolerantnetworking (DTNs) [14, 28, 38]. Suchwidespreadis-
ageunderscoreghe needfor consumer®f datato ensurethat
the datathey useis indeedstretchabldo their desiredapplica-
tion andstateary assumptionsnadewhenapplyingdatato a
new domain. Stretchabilityin the wirelessdomainis affected
by severalfactorsincludingwhenandwherethe measurements
weremade(e.g.,wired-sidevs. wireless-side)the type of net-
work technology(e.g., WLAN vs. Bluetooth), and types of
accesgslevices.

For example, one of the most popularmeasurementgom
theDartmouthdatasehasbeenthesyslogtraces.Theseraces
have beenusedfor mary studieswhereinformationaboutuser
mobility is required. While mary studiesusethe syslog data
in the context of user mobility in a WLAN (e.g.,[9, 559]),
an interestingapplicationof this datahasbeenin the field of
DTNs [14, 28, 38]. The applicationof the Dartmouthdataset
to DTNs is an exampleof a wirelessdatasefrom onedomain
beingstretchedfor usein a differentapplicationand,aspartof
our C-rules,begsfor anexplanation.To illustrate,we focuson
one of theseDTN studiesthat usesthe datafrom Dartmouth
college [14]. In additionto the C-rules, the S- and M-rules
alsoapply to this particularstudy wherethe authorsfocus on
characterizinghetime betweercontactf the pairsof devices
(inter-contacttime) and useseveral datasetsn additionto the
Dartmouthdataset. Thesedatasetsncludeda secondWLAN
traceandatraceof Bluetooth-enable®DAs. Additionally, new
measurementssingiMotesweremade.

The measurementfrom the Bluetooth-enabled®DAs are
clearlyapplicableto thestudyof DTNsasthetracesshov when
the PDAs werein rangeof eachother However, the tracesof
WLAN mobility neededo be corvertedinto mobility patterns
in anad hocnetwork. To make this corversionthe authorsas-
sumethat clientswithin rangeof the sameaccessoint could
potentiallyconnectwith eachother This corversionhasthree
main limitations that the authorsenumerate. The corversion
canbe optimisticin the caseof clientsthatareat oppositeends
of a cell who may not be ableto connectwith eachother It
may alsobe pessimistidor clientsthatarein neighboringcells
who may actually be closeenoughto make a connection.Fi-
nally, laptopsare the mostcommondevice usedin the Dart-
mouthWLAN trace[25]. Thetype of mobility obsenedwith
a laptop which is not always with its owner and powered off
attimes, may difter from the mobility obsened for PDAs and
iMotes which are generallyalways with their owner. In this
sensethe stretchabilityof the Dartmouthdataseto the DTN
domainremainssomevhatquestionabl@endwould requirefur-
therinvestigation A similar conclusionis reachedvhenexam-
ining the stretchabilityof the Dartmouthdataseto the studyof



congestioncontrol at APs [9], but the algumentsare different
andinvolve the simplescalingup or down of obsenedtotal of-

feredload thatignoresthe reactive natureof end-to-endTCP
connectionghatmake up thetotalload.

Our proposedS-rules comeinto play when examining the
statisticalanalysisof theinter-contacttimesin DTNs[14]. The
complementargumulatie distribution function (CCDF) used
for characterizinghe tail of the inter-contacttime distribution
acrossthe datasetsan be affectedby the quality of the mea-
surementst hand. Specifically the granularityandthe dura-
tion of the measurementsBnpactthe low and high valuesof
the distribution, respectiely. The authorsdiscusstheseissues
in relationto their analysis.Theinter-contacttime distribution
is also a statisticwhich may be sensitve to the type of net-
work considered.This makesanalyzingthe inter-contacttime
distribution of the WLAN tracesproblematicf the desiredap-
plicationis, for example,mobile ad hoc networks of iMotes or
PDAs. Leveragingthe differenttypesof datasetsllows the au-
thorsto obsene the differencedetweerthesenetworks. They
areableto obsenethatwhile thevalueof theinter-contactime
is sensitve to the network type, robustnesss obseredin the
tail characteristicsf theinter-contacttime distribution.

Theauthorsalsopresenamodelfor theinter-contactimein
DTNs basedon their datasets.They proposethat the distribu-
tion of the inter-contacttimesis heavy tailed anddecaysmore
slowly thanthe exponentialdistribution proposedn previous
studies. This trendis obsered acrossall datasetswith differ-
ent parametergor the WLAN andiMote datasets.However,
it is unclearwhetherthe obseneddifferencesn the parameter
estimatesregenuineor aresultof thelimited quality of theun-
derlyingmeasurement§ hefactthatthemodelselecteds able
to capturebehavior betweerthe variousdatasetslespitediffer-
entaccesslevicesand datacollectionmethodologiesnakesa
corvincing casefor the model selected. Thereare, however,
someweaknessem themodelingapproachakenin this study
For instance the primary motivation behindthe model selec-
tion is finding a modelthatis ableto reproducecharacteristics
of the obseneddataratherthanfinding a modelthatis ableto
capturetheunderlyingbehavior thatgenerateshe distribution.

3.3. ClarkNetdataset

Next, taking a differentpath, we explore the useandreuse
of a specifictracecollected15 yearsago. After presentinghe
originsandmotivationfor thetracewe examinea subsebf the
subsequerdgtudiesthatusedthe dataset.

3.3.1. Badground

Oneof thefirst Web sener workload characterizatiorstud-
ies ([4]; presentedn Junel996)examinedsix differentWeb
sener workloadsvarying in intensity and duration. The pri-
mary contribution of the paperwas the identification of ten
characteristiccommonto all of the datasets A challengefor
the 1996 study was obtaining appropriatedatasets. This ex-
perience,coupledwith requestsfrom other researchersmo-
tivated the authorsto make thesedatasetgublicly available.
They obtainedpermissionto releasefour of the six datasets
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usedin their study(Calgary ClarkNet,NASA, Saskatch&an)
andmadethemavailablein the InternetTraffic Archive [26] in
April 1996. Here,we focus on consumptionof the ClarkNet
datasetasit hadthe mostintenseworkload(measuredy aver-
agerequestate)of thefour datasets.

3.3.2. A History of Consumption

After an extensve searchwe identified 139 researctpubli-
cationsthat utilized the ClarkNetdataset. Theseincluded112
papersin workshops,conferencesand journals, three books,
eightthesessix technicalreportsandtenpapersn non-English
venuesFigure2 shavsthebreakdaevn of peerreviewedpapers
over time. The original authorsusedthe ClarkNet datasetin
four differentpapers(including [4]) between1995and 1997.
The first use of this datasetby other authorsoccurredin
1997,andsurprisingly hascontinuedthrough2010,whenthe
ClarkNetdatasetvas morethan 15 yearsold.* Although use
pealedin 2003andhasgenerallybeendecliningsince,thesec-
ond largestuseoccurredin 2007. The 108 paperswritten by
other authorswere publishedin 90 unique venues;someau-
thorswrote multiple paperswith somevenuespublishingmul-
tiple articles.Roughlyaquarterof thesepapersverepublished
in non-systemslomaing(e.qg.,Artificial Intelligence,datamin-
ing, softwareengineering).

15 @ Other Researchers

Arlitt + Williamson
10

Number of Publications

1995

2000 2005 2010

Figure2: Publicationtimelinefor ClarkNetdataset.

3.3.3. Observationgnd Implications

With over 100 papersreusing the ClarkNet dataset,we
pickeda subsetindprovide examplesof how theauthorscould
have benefitedby answeringour questions.We startby exam-
ining theadherencé¢o theP-, C-, S- andM-rules.

Gatheringandreviewing more thana decades worth of re-
searchpublicationsthat utilized a familiar dataseprovidesad-
ditionalinsightsfrom the producers perspecitie. First,thecon-
sumptionof the dataasshawn in Figure2 lastedmuchlonger
thanexpected andonecanonly speculat@boutthe underlying
reasons.Secondthe datawas usedin a muchbroaderrange
of venuesanddomains,andby a large numberof researchers.
Both of thesereasonsupportthe P-rule requirementgor thor-
oughdocumentatiomf meta-databoutthe datasetAs atleast
somefraction of the consumeraill be affectedby the weak-
nesse®f the data,alertingthemto known weaknessew/ould

4The use of the datasethas ironically outlastedClarkNet itself as all
ClarkNetproductsandserviceswveresold off or dismantledby 2003.



be beneficial. Someof the meta-datamay be forgottenover
timeif it is notdocumented.

With the ClarkNetdatasetthe P-ruleswerefollowedto ade-
gree.Thishappenedby producergompletingthetemplatéNeb
pageat the InternetTraffic Archive for the dataset.However,
the P-rules suggestadditional meta-datawhich in hindsight
may have beenusefulto someconsumers.For example,the
measuremertechniqueusedin this casewassimply the gath-
ering of accesdogsfrom the ClarkNetWeb sener. A missing
pieceof meta-datas the versionof Web sener usedto collect
thelogs. This mighthave beenusefulfor trackingarny bugsdis-
coveredin the logging mechanismyvhich might have affected
the collecteddata.

Perhapsa moresignificantobsenationis thatthe meta-data
may needto be revisedovertime, asmoreis learnedaboutthe
dataset. For example, the meta-dateon the ClarkNet dataset
only alerts (potential) usersto [4]; in 1997 an extendedver
sion [5] of this work includedknowledgethat hadbeendeter
mined by the authorssuchaslimitations of the datasets Sim-
ply tracking useof the dataset(e.g., a wiki that allows users
to list their own publicationsthat use the datasetwould as-
sistresearchers learningof arny additionalmeta-dataliscov-
eredby others. The contributorsof datasetsvill be ableto see
the tangiblebenefitsof makingdatasetpublicly available. A
third insightis thatthe meta-datashouldbe packagedvith the
data(in additionto beingavailableon a Web page).Numerous
publicationsindicatedthey retrieved the datasetfrom a loca-
tion otherthantheITA, it is uncleaiif thesesitesthatreplicated
the datasetlsoreplicatedthe meta-dataThis issuealsoarises
whenthedatais exchangedlirectly betweerconsumers.

As for the C-rules, we provide an example of inappropri-
ate re-useof a dataset. The ClarkNet datasetdoesnot con-
tain a definitive identifier for distinct users. However, some
studiesassumethat thereis a one-to-onemappingbetweena
client IP addressanda user In the ClarkNetdatasetthereare
142,993uniquefully qualifieddomainnamegFQDNs)andIP
addresses.Of these,69 have the term ‘proxy’ in the FQDN
(lessthan0.05%). However, whenthe numberof requestger
hostidentifier is considered31 of the 100 busiesthostshave
the term proxy in their name(31%), as do 24 of the top 30
hosts(80% - all from AOL). This suggestshatcareis needed
in utilizing this datasetfor studyinguserbehaior. Nanopoulos
etal. [48] usetheClarkNetdatasein a comparisorof prefetch-
ing algorithms. They indicatethat a first stepin preparingthe
datais theidentificationof usersessionsandreferto Cooley et
al. [16] for the methodto do this. Cooley et al. [16] correctly
identify the presenceof proxiesasan issueto addressn the
identificationof usersessionsThey provide two methodgquse
cookiesor client-sideagentspndtwo heuristic§¥basednuser
agentor refererheadeiinformation)for distinguishingbetween
usersthat are utilizing the sameclient machine. While all of
thesearevalid in general,noneof themare applicableto the
ClarkNetdatasetasit doesnot containperuseridentifierslike
cookiesnordoesit containuseragentor refererheadersThus,
the Cooley techniquewvould not have correctlyidentifiedall in-
dividual usersin the ClarkNet data,andthereforethe dataset
shouldnot have beenusedin [48] (unlessthe issuecould have

beenaddressedtilizing a differenttechnique).

Reflectingon the C-rules, several issuesarise. First, con-
sumerseedto bedisciplinedin their useof meta-dataFor ex-
ample,consumershouldmaintaintheoriginal labelassociated
with the datasetto ensurethatreaderqor reviewers)areaware
that a datasetusedin one studyis the sameasin other stud-
iesthatusedthe samedatasetThedistributorsof the ClarkNet
datalabeledit asClarkNet;mostconsumersnaintainedhis la-
bel but a few referredto it asC.Net, CNet, or Balbach. Also,
researcherssho usea datasemultiple timesshouldapply the
C-rulesevery time they utilize the datasetto aid in avoiding
problemsencountereth onestudyfrom contaminatingollow-
on studies(particularlyif oneor morenew participantsarein-
volved). Finally, since somevenuespublish multiple papers
thatusethesamedatasetye suggesthatreviewersshouldalso
apply the C-rulesin their reviews (e.g., referauthorsto a par
ticularrule thatthey have failedto meet).Onereasorfor doing
thisis thatthereviewersareoftenin a betterpositionto assess
thelongevity of the datasefor that particulardomainthanare
theproducersf thedataset.

Among the S-rules, the third rule, that of “checkingresults
for consisteny”, is perhapghe mostimportanthere.We illus-
tratethis by consideringseveral paperghat usedthe ClarkNet
datasethatwe have insightinto. The authorsof [4] indicated
thattheanalysigechniquesisedin the papemweresuitableand
robust(thefirst two S-rules).However, subsequergtudiessug-
gestedsereral improvementswith respectto the analysis. A
simple exampleis that with high-variability data(suchasthe
file sizesin the ClarkNet data), the meanis largely uninfor-
mative. Instead,it wassuggestedhatthe medianbe reported,
asit is more meaningfulthanthe meanand also more robust
to inaccuraciesn the data. This is an exampleof how addi-
tional scrutiry (thethird S-rule) would have improvedthequal-
ity of the analysisresultsin [4]. Anotherstudythatdealswith
checkingfor inconsisteng andappearedn subsequenpapers
publishedby othersis by Downey [22] who re-analyzedthe
file sizedistribution in the ClarkNetdatasetHe concludedhat
the evidenceto supporithe Paretomodel(asreportedin [4]) is
“weak andmixed; andsuggestethelognormaldistributionas
amoreappropriatemodelfor file sizes.However, asdiscussed
in detailin [61], favoring the higherparameterizedbgnormal
model over the parsimoniousParetomodel comesat the cost
of extremesensitvity of the lognormalparameterso the size
of thedatasef(i.e., durationof datacollection)which seriously
questiongthe usefulnesf the lognormalalternatve in prac-
tice.

Lastly, we considertwo examplesfor the M-rules. Use of
an autocorrelatiormodel to model Web sener traffic is sug-
gestedn [43]. Thework determinegshe modelparameteset-
tingsby analyzingWebsenertracegincludingClarkNet). The
modelfor eachworkloadis validatedby comparingthe mean
squareerrorbetweertheempiricalautocorrelatiorfiunctionand
the theoreticalautocorrelatiorfunction of the model. Apply-
ing the M-rulesrevealsthatthe paperis strictly an exercisein
data-fitting,demonstratekttle creatvity in building themodel,
doesnot demonstratehe predictive power of the model, and
validatesthe model againstthe datausedto parameterizeéhe



model. In effect,the M -rulesquestionthe main purposeof this
particularmodelingeffort.

Anothermodelingpaper10] extendedanexisting multifrac-
tal model,to reducethe compleity of the modelfrom O(N) to
O(1). The predictive power of the modelis demonstratedhy
comparingits accurag in choosingfiles to cacheagainsttwo
other existing models. To validatetheir model, they examine
how accuratelytheir model capturesthe temporaland spatial
locality of theempiricaldata. This papermorecloselyadheres
to someof our M -rules.However, sinceno modelselectioncri-
teriaareprovidedandalternatve modelsthatfit thedataequally
well arenot consideredthe validity of the proposednodelre-
mainsquestionablegspeciallyin the absencef any meaning-
ful andnetwork-centricexplanation.

4. Discussion

Having presentedhree example evaluationsacrossdiverse
areaswe now illustrate how our Socraticmethodfor evaluat-
ing measurement-basegsearctappliesin anew andemening
area.We useOnlineSocialNetworks(OSN)asanexamplearea
for severalreasonsFor one,OSNshave recently dramatically
gainedin popularitywith acorrespondingncreasen interestin
measuringhem. OSNsare how the mostpopularapplication
sincethe World Wide Webbeganin 1992. Usersarefirst class
objectsin thesensdhatthey arethe primarycreatorsof content
andasignificantpartof thecommunicatiorin OSNsstemsrom
interactionsbetweenusers. Along with Web 2.0 technologies
(suchasAJAX andmashups)thousand®f OSNshave sprung
up including MySpaceandFacebookwhich recentlyreacheda
userbaseof half abillion users.A largenumberof externalap-
plicationsusethe distribution platform of OSNsto enablenew
formsof inter-userinteraction[18].

Moreover, giventhatwe arestill in the early daysof OSNs
and OSN researchwe fully expectto seerapid and possibly
drasticchangesn the designandfunctionality of future OSNs.
Thusthepredictive valueof initial measuremerstudiesarenot
likely to be very high, unlessthey areaccompaniedy useful
meta-datanformation. To this end, readily available domain
knowledgeaboutthe designand operationof OSNsoughtto
guide measuremengfforts in this area. However, becauseof
thenewnessof thefield, thereis still alack of ary organizedef-
fort to collectOSN-specifidata,andthe numberof consumers
of suchdatahasremainedsmall. Sincethis situationcanbe ex-
pectedo changewith time, thereexistsa uniqueopportunityto
starta dialog on establishingoropermeta-datan this domain
andensurethatary datareleasedvill meetsomebasiccriteria.
Thusasthe numberof publicationsin this areaincreasesour
expectationis thattherewill beaprescriptve valuein applying
our Socraticmethod.

4.1. TheP-rulesandOSNmeasuements

Two of the mostpopulartechniqueghat have beenusedto
measuré@SNsareactive crawls [45] andpassie measurements
in theform of paclettraces[24, 56] or click streamdata[11].

10

OSNsdo not exposetheir link structurepartly due to legiti-
mateprivagy concernsput alsoin a deliberateattemptto pre-
ventexternalcrawlersfrom gatheringthe connectiomrmatrix of
the OSN.Active datagatheringunsinto limitationsin theform
of acceptableisepoliciesandrestrictionson the numberof re-
quests. Also, an active crawl that usesa particulartechnique
(e.g.,flooding, certaintypesof randomwalk-basedcrawling,
sampling)to discoveranessentialljunknawn structureis likely
to missportionsof the OSN graph,especiallythe looselycon-
nectedregions. Passve datagatheringalsohaslimitationsand
will certainly missinformationaboutuserswho did not com-
municateduring the measurememperiod. Measurerf OSNs
shouldprovide necessaryneta-datanformationto indicatethe
limitations imposedon their measurementas a result of the
techniquesisedandpoliciesencounteredoconsumersf their
datacouldre-examinethetechniquesndpoliciesatthetime of
reuse.

Although mary OSNsprovide an ‘open’ API for accesdo
portions of their network, as yet thereis no single API that
can help gatherdata acrossmultiple OSNs. In the absence
of genericcrawlers, moststudiesto datehave beenon a small
scale.Crawlershaveto parseandextractawide varietyof links:
navigation,friend, groupetc. In the presencef Javascriptand
asynchronouability acravler mayhaveto simulateuserclicks.
Oneway to probesiteslike Facebookhatrevealonly portions
of the connectiorinformationis to createexternalapplications
viathe OSNAPIsthatcancollectanorymizeddataaboutusers
who usetheapplication.As pointedoutin [18], thecommunity
needgenerapurposeoolsthatcanbecustomizedo cravl and
parsea particularOSN site. Suchtools will exposecommon-
alities acrossOSNsand highlight generictechnicalissuesfor
measuringOSNs. Agreeingon a classof measurementech-
niquesandtoolswill helpfuturemeasurergn OSNs.

With regardto the measuremergetup,gatheringdatain an
OSNtypically involvessignificantoverheadn theform of gain-
ing accesdo differentportions(e.g.,regional networks) of the
unknown structureto studyglobalpatternor derive resultsthat
arevalid for the OSN asa whole. This is further complicated
by the scaleanddifferencesdbetweencultures,languagesand
geographiaegions. Moreover, asa recentprivacy study[34]
shaved, what makes performing OSN-wide inferenceseven
moredifficultis thefactthatthe changesnternalto anOSNare
non-uniform;significantasymmetricathangeswithin regional
networks in Facebookwere obsened within a two-monthpe-
riod. With thephenomenadjrowth in the numberof usergoin-
ing popularOSNssuchasFacebookwe expectsuchchanges
to becomeéboth broaderandevenmorenon-uniform.

Many examinationsof individual OSNs have beencarried
out [7, 35, 36]. Thesehave included studiesof properties
like rankings, geographicabopularity [13], objectsizes,ac-
cesyatternsrateof changd24], degreeandclustercodticient,
anddifficulty in finding backward links [45]. Propertiessuch
asconnectity, content,andtechnologyare commonto most
OSNsandthuscanbe partof acomparatie study[18, 36, 45].

Therearemary differentwaysto studyOSNs.For example,
studieshave examinedYouTube both from campusedgenet-
works [24, 67] andusing crawling techniqued45, 13]. More



concerningare seeminglyminor differencesin methodology
thatcanleadto divergentresultsbetweerstudies.An early pa-
per[27] on Twitter thattried to minethewordsusedin commu-
nicationto extractcommunitiesandalso examinedthe friend-
ship relationshipand differentclassesof usersis an example
of how the samplesize anddurationof the datacanaffectthe
findings. Theunderlyingdatasetonsistef atwo-monthlong
collectionof randonrecentTwitter messagethatis availablein
Twitter’s public timeline. This passie datagatheringwasfol-
lowedby fetchesof friendsinformationaboutthe users.A sub-
sequenstudy[32] which includedtwo differentactive crawls,
in additionto gatheringthepublic data,paintsa broadempicture
of the Twitter usergraph.In particular passve usersarebetter
representeth this study asportionsof thefull graphmaynever
have beendiscoveredif they werenotreachabldérom thosewho
happenedo beactive duringtheearlierstudy Theeffectof the
dependencen only active userds a difficult parameteto esti-
mate.A falseinferenceaboutsequentiagjrowth of useriDs also
creepsnto [27] andwaspointedoutin [32]. Encounteringuch
a diversesetof techniquesisedto measureéOSNsstresseshe
importanceof understandindiow the gathereddatamight be
affectedasa resultof the measuremergetupandtechniques.
Ideally, all of the relevantinformationwill be capturedin the
meta-dateassociatedvith OSN measurementdyut if current
datasetsare an indication, we arestill far from this ideal sce-
nario.

Looking aheadandrecognizingthatdynamismis anintegral
partof mostOSNSs,thecurrentcropof single-snapshatatasets
is clearly insufficient. Whatis neededare multiple snapshots
andassociatedneta-datanformation. Giventhe rateat which
OSNsare evolving, meta-dataattributesthat are necessargo
thatplausibleinferencesanbe drawn includethe datesof the
individual snapshot@nd the locationswherethey were gath-
ered,the rateandmannerof growth in userpopulationandac-
tivity level, andtiming informationrelatedto individualusersor
theiractivities. However, evenin thepresencef multiple snap-
shots,thereareissuesrelatedto the meta-dataandthe quality
of thedata(e.g.,missingevents).Considerfor examplethere-
centwork onvariouslink predictionmodels[40, 64] thathave
beenproposedo examinethe evolution of OSNs. Meta-data
aboutOSN-specifigpeculiaritiesand the potentialfor missing
or inaccuratedatacaneasilyskew inferences.To illustrate,the
methodologyusedto predictgrowth of friendsin OSNswith
symmetricfriend relationships(like Facebookand MySpace)
will notwork for asymmetric®OSNslik e Twitter. On Facebook
two usershave to becomemutual friends while on Twitter a
large numberof userscan “follow” anotheruserwithout the
latter following ary of them. Furthermore OSN aggrejators
like FriendFeed44] consistof only userswho are presenton
multiple OSNsandarethusa skewedsubsebf OSNusers.

Another topic where the current crop of single-snapshot
datasetss limiting OSN researclandwherethe availability of
new semantic-richOSN datais critical is inferring userinter
actionsin OSNSs. Clickstreamdataor paclet traces(assuming
they are madepublic) would be a perfectsource. However,
without a variety of additionalattributes,suchasusermix, lo-
cal popularityof the OSNfeaturesandnatureof andreasorfor
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communicationjnferencesdravn could be incorrect. For ex-
ample,it is well known thatwhile two usersmay be “friends”,
the depth of their “friendship” is betterreflectedby the fre-
gueng andnatureof communicatiorwhichwouldtypically not
bepresenin paclettraces.Thusto gainabasicunderstanding
of how usersor groupsof usersinteractin anOSNwill require
informationthat canbe gleanedfrom a combinationof paclet
tracesclickstreamdata,andactive crawls, andthe “fusion” of
thesedifferentdatasourcesandcorrespondingneta-datanfor-
mationloomsasanimportantopenproblem.

4.2. TheC-rulesandOSNmeasuements

As in other areasof measurement-basedetworking re-
searchproducer®f OSN-specifianeasurementseconstantly
being asled to make the crawled portion of the OSN graphs
available and somehave admirablydoneso already At least
two recentpapershave madetheir datasetsvailable: YouTube
datain [13] andthe crawled graphin [45]. Theformer's meta-
datais betterexplained;the latter’s anorymizeddatais likely
to belessusefulasit is justa descriptionof thegraphstructure
of their crawl. In abstractthe C-rulesfor OSNsareto ensure
stretchabilitykeepingin mind the key differenceetweerthe
variousOSNSs. Similarities alreadyobsened betweernvarious
OSNsat the macrolevel area risky foundationfor blind reuse.
Datagatheredn one OSN may be skewed dueto the presence
of certainfeatureghatareabsenin the OSNto which the data
is beingapplied.Datacollectednitially for thepurposeof char
acterizations oftena poor candidatdor reuseasit is typically
gatheredn asinglevenuewith alimited reflectionof the over-
all distribution. Thelifetime of early datais alsolimited in the
fastchangingOSN world. Giventhe considerableestrictions
and other obstacledn gatheringdatain OSNs,ary available
datais likely to lack representatienessandfor ary associated
meta-datdo be usefulandinformative,it mustprovide precise
informationaboutthe collection methodologyand ary limita-
tionsin placeatthetime of datacollection.

In general there hasbeensurprisinglylittle or no reuseof
the data,andso statisticalandmodelinganalysisfrom a reuse
point is largely premature’. An importantreasonfor this ob-
senedlack of reuseof OSN datais that currentOSN research
is slowly moving away from treatingOSNsasstaticgraphsand
performingsimple graph-based@haracterizatiorof OSNs. In-
creasingly researcherfiave recognizedthe needto look past
just (static)friendshiprelationshipanddealwith dynamismas
an integral part of real-world OSNs[60]. The evolving nha-
tureandobsenedstructureof (some)OSNshave motivatedre-
searcherso focusmoreonissuegelatingto internalsof OSNs
andtheir distributedarchitecturesyserinteractionswithin and
acrosOSNs,role andusageof externalapplicationsnew eco-
nomicmodels andalgorithmsthatcancopewith thelarge-scale
natureanddynamicsof OSNSs. Clearly, for ary in-depthstud-
ies of theseandrelatedissueshaving accesgo a collectionof
genericnodesandlinks is insufficient. Whatthesenewer areas

5Authorsof [45] and[13] werenot aware of external publicationsthatin-
cludedreuseof their datasets.



of OSNresearchrequirearenot just (static)friendshipgraphs
but crawled datawith a substantiabmountof meta-datanfor-

mation that reflectsthe high semanticcontentassociatedvith

individualusersandtheiractiities within the OSNs[19]. How-

ever, in contrastto crawled datathatresultsin genericfriend-
ship graphs.the type of crawled datarequiredfor thesenewer
areanf OSNresearcthasinstantlyraisedseriousprivacy con-
cernsthat have effectively ruled out ary reuseof suchdataby

otherresearchers.

To dealwith this problemand ensurethe reuseand wider
availability of suchdata,thetopic of anorymizingevolving and
annotatedgraphshas attractedrecentattention. Initially the
work wasin anorymizing network datain the form of paclet
traces. It is usefulto contrastanorymizationof paclet traces,
wheretherehave beenconsiderablesfforts [63, 50, 54] to the
new ongoingwork in OSNs.For payload-fregoaclettracedata,
the principle focuswasto anorymize IP addressesHowever,
the absencef appropriatdP addressnformationcould nega-
tively impactthe ability to naturally group packetsor recover
the communication‘graph” data, leadingto work on prefix-
preservinganorymization.However, in the OSN context, there
aremary moreparametershatcouldresultin re-identification.
As recentwork in OSNanorymization[12] shows, in the pres-
enceof analytic guarantee®f privagy and anorymity, OSNs
may be willing to releaseanorymized versionsof snapshots
and associatedneta-data. It had beenshown [8] earlier that
attaclers with backgroundknowledge can learn information
aboutsomeindividuals on an OSN from an unlabeledgraph
by planting nev nodesand linking themto legitimate users.
Thus, we needto know the time of addition of nodesto dis-
tinguish original nodesand new ones. In a passve versionof
anattack,anadwersarycanlearnaboutalarge close-knitgroup
andthuspropertiedik e strongerconnectionsieedto beknown.
Somedefensve techniquego preventre-identificatiorhave led
to the use of addingand removing edgesfrom the graphbe-
ing anorymized. But the resultinggraphwill be differentand
may not be asusefulto studyingthe samepropertiesasin the
originalgraph[66].

5. Conclusion

Early Internet measuremenprojectsinvolving datasetsof
traffic-relatedquantities(e.qg., paclet traces Web sener work-
loads)have led to a generalbelief that Internetmeasurements
areof high quality andthatsubsequertlataanalysisandmod-
eling efforts can take the collecteddataat facevalue. How-
ever, more recentmeasuremengfforts that concerninternet
connectvity-related quantities(e.g., routerlevel connections,
AS-level links) have highlightedthe fact that in the Internet,
it is moreoftenthannotthecasethatwhatwecanmeasueisin
generl not whatwewantto measue (or whatwethinkweac-
tually measue). This realizationhasseriousandwide-ranging
implications,not only for the analysisandmodelingof there-
sultingmeasurementsut alsofor thevalidationof claimsthat
arederivedfrom suchdataor the proposednodels.

Motivated by an everincreasingnumberof measurement-
basedstudiesin the areaof Internetresearchwe have agued
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in this paperthatit is time to examine how we can validate
ourresearctprocessthatis, developingconfidencehatthere-
sultsderivedfrom[the measuementst hand] are indeedwell-
justifiedclaims[53]. A lackof specificstandard$fasledto rep-
etition of errorsin variousaspectof measurement-baseubt-
working researchand we have outlined a Socraticmethodto
help correctthis problem. As a first stepwe have proposeda
setof key questionsandrulesfor producersandconsumer®of
data,aswell asthosewho areinvolvedin analysisandmodel-
ing efforts. However, we believe thattrying to reachagreement
on somebasicstandardsequiresa much broadereffort than
justour (likely biased)views andneedsheinvolvementof the
communityasawholeto encourag@nongoingdialogbetween
measureranodelersandexperimentersOneof our long-term
goalsis to initiate andencourage community-widesffort that
tracksmeta-datassociatewvith differentdatasetshataregath-
eredandreusedn studies. Although we have not delved into
thespecificsof meta-datdormatsfor differenttypesof datasets
here,we planto do thatin follow-up work or, betteryet, look
towardsthe communityto discussandadoptone.

Thereis no derying that raising the bar for measurement-
basednetworking researchcreatesmore work. While main-
taining adequatemeta-datds especiallyimportantfor rapidly
evolving and changingsystemssuchasthe Internetfor which
the value of a given datasets boundto changeover time, in
practice this propertyshouldmake researcherthink twice be-
fore investinga lot of time andeffort settingup accuratemea-
surementsof phenomenahat may or may not exist over a
longerperiod. Arguing for amoreprominentrole of the meta-
dataideaseemdo strike a healthybalancebetweeraimingfor
“perfect” datathat may take an unreasonabléime and effort
to collectandmay have only a shortshelftime andproducing
“useful” datawherethe requiredeffort/time is more commen-
surablewith the datas generallyshortshelflife andtypically
limited usage.
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