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ABSTRACT
Proactive measurement of the delay in communication net-
works aims to detect congestion as early as possible and find
links on which the traffic flow is obstructed. There is, how-
ever, a tradeoff between the detection time and the cost (e.g.,
bandwidth utilization). An adaptive measurement adjusts the
inspection rate per each link, for effective monitoring with
reduced costs. In this paper we show how adaptive measure-
ment can be implemented effectively in SDN. We present
SDProber—a tool for proactive measurement of delays in
SDN. SDProber uses probe packets that are routed by adding
tailored rules to the vSwitches. It adjusts the forwarding
rules to route probe packets more frequently to areas where
congestion tends to occur. To increase efficiency, instead of
computing complex routes for probe packets, SDProber uses
a novel approach of probing by a random walk. Adaptation
is achieved by changing the probabilities that govern the
random walk. Our experimental results show that SDProber
provides control over the probe rates per each link and that it
reduces measurement costs in comparison to baseline meth-
ods that send probe packets via shortest paths.
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1 INTRODUCTION
Measurements are crucial for managing communication net-
works, e.g., for troubleshooting and to maintain service-level
agreements (SLAs). However, measurements incur costs in
the form of bandwidth, CPU and memory utilization. In this
paper we show how the central control in SDN can be used
for reducing the costs that are involved in proactive delay
measurements, and how SDN can facilitate adaptability of
the measurements to varying conditions.

Persistent delays in wide area networks are often perilous
and can adversely affect the effectiveness of online commerce
in the stock exchange, streaming video and audio, online
games, and other online applications, where obstructed data
transfer can cause a significant loss of money or disrupt the
quality of service. Thus, it is essential to proactively detect
long delays as early as possible, and cope with the hindrance,
as soon as it starts.

Delays are detected by periodically inspecting the links of
the network. However, there is a tradeoff between the detec-
tion time and the cost. Increasing the inspection rate of a link
can reduce the detection time of a delay, while inspecting
a link too often could hinder traffic via that links or via the
nodes it connects. It is, thus, desirable to limit the inspection
rate per each link. A lower bound would specify how often
the link should be inspected, to prevent a congestion that is
unobserved or detected late. An upper bound would restrict
the number of inspections per link, so that the measurement
would not obstruct network traffic.

Network congestion events are frequent and are distributed
unevenly. The frequency of congestion and high delays, thus,
could be learned, and the inspection rates would be modified
accordingly. Links that were not inspected for a long time
and frequently-delayed links would receive a high priority
when considering which links to examine next. The goal is
to inspect each link at a rate that is within the specified lim-
its. Traditional tools, like ping and traceroute, however, are
unsuitable for adaptive measurement, where different links
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should be inspected at different rates. To illustrate this, con-
sider a network where the links are arbitrarily partitioned
into two groups. The links of one group should be probed
at a rate of x inspections per minute, and the others, at a
rate of 2x . Such constraints often cannot be satisfied when
measuring round-trip times via predefined paths, e.g., when
links from the two groups complete the round trip of one
another. SDN’s central control over forwarding rules, how-
ever, allows for efficient implementation of adaptable delay
monitoring (unlike ping’s predefined path limitation).

We present SDProber—a software-defined prober for proac-
tive delaymeasurements in SDN. SDProber uses probe agents
to emit probes and measure the travel times of the probes.
To avoid complex route computations, SDProber employes
a novel method that combines pseudo random walk of the
probes with binary exponential backoff. (In Section 3.2.2
we explain why a “pseudo” random walk is employed.) The
probes traverse the network in a randomwalk over aweighted
graph. The weights are adapted to route more probes via
links whose lower limit is unsatisfied, and less probes via
links whose the upper limit has been exceeded.
The goals of SDProber are as follows: (1) inspect links at

specified rates, (2) reduce the total number of probe pack-
ets when monitoring the network, (3) minimize the number
of excess packets through links, and (4) detect delays as
early as possible. In our experiments, we show that in SD-
Prober the expected number of probe packets going through
a link is close to the observed number, which means that
the underlying probabilistic model of the random walk is a
correct representation of the actual probing. We compared
SDProber to two baseline methods that send probe pack-
ets through shortest paths. SDProber uses 4–16 times fewer
probe packets than the baseline methods and sends 10–62
times fewer surplus packets through links. Notwithstanding
this significant cost reduction, SDProber is as fast as one
baseline method and much faster than the other method, for
detecting all the delays.

2 NETWORK AND DELAYS
A network is represented as a directed graph G = (V ,E)
where the nodes are routers and switches. The edges are
communication links between nodes. Given two nodes s1
and s2, delay(s1, s2) is the time it takes for a packet sent from
s1 to arrive at s2. When themeasured delay for a link is higher
than expected, in comparison to historical delays, we refer
to the link as delayed.
In proactive monitoring, the links of the network are in-

spected periodically, e.g., using probe packets. The rate of
inspection per each link, i.e., probe packets per link, should
not exceed a given upper bound, to prevent a waste of re-
sources, and it should not go below a certain lower bound,

Figure 1: Schematic view of the mirroring process.

to prevent a case where delays are not detected for a very
long time. The network operator specifies the minimum and
maximum rates of probe-packet dispatching per link. This is
specified as a rate constraint of the form (min-rate,max-rate).

Problem definition: The input is a network G with rate
constraints on edges, and a cost constraint C that specifies
the total probe packets per minute. The goal is to probe G
such that probe rates would satisfy the rate constrains and
the cost constraint C .

Sending probes via predefined paths could be problematic
when paths consist of links that should be probed at different
rates. Computing a set of paths that satisfies the probe-rate
constraints is complex, expensive in terms of running times
(essentially, NP-hard), and inflexible, in the sense that any
change may require computing a different set. SDProber
solves this by routing probe packets stochastically, based on
the probe rates, in a random-walk fashion.

3 OVERVIEW OF SDPROBER
In this section, we present an overview of SDProber.

3.1 Delay Measurement
The delay between two given nodes s1 and s2 is measured by
SDProber using probe packets (similar to [17]). A schematic
representation of the process is depicted in Fig. 1. 1 A probe
agent sends a probe on a path via s1 and s2. 2 When the
probe packet arrives at s1, it is mirrored, and the clone is
sent to a collector. 3 The probe packet is forwarded to s2.
4 Upon arrival at s2, the probe packet is mirrored and the
clone is sent to the collector. Let ti be the time of arrival at
the collector of the mirrored packet from si , for i ∈ {1, 2}.
The estimated delay, is the time difference t2 − t1.

The measured time difference depends on the travel time
of the mirrored packets from s1 and s2 to the collector. Mea-
suring this one-way travel is hard, however the round trip
from the collector to a node and back can easily be mea-
sured using ping. Let t↔1 and t↔2 be the round trip times
between the nodes s1, s2 and the collector. Let t→1 and t→2
be the one-way trip times from the nodes s1 and s2 to the
collector. Then, t2 − t1 = delay(s1, s2) + t→2 − t→1 . Clearly,



t↔1 ≥ t→1 and t↔2 ≥ t→2 . So,

t2 − t1 ≤ delay(s1, s2) + t→2 ≤ delay(s1, s2) + t↔2

t2 − t1 ≥ delay(s1, s2) − t→1 ≥ delay(s1, s2) − t↔1
Accordingly,

delay(s1, s2) − t↔1 ≤ t2 − t1 ≤ delay(s1, s2) + t↔2
That is,

t2 − t1 − t↔2 ≤ delay(s1, s2) ≤ t2 − t1 + t
↔
1

This provides a bound on the error for ameasured delay(s1, s2).
For example, if the measured values t2 − t1, t↔1 and t↔2 are 10
milliseconds, 2 milliseconds and 1 millisecond, in correspon-
dence, then delay(s1, s2) is at least 9 milliseconds and at most
12 milliseconds. See in [15] how to bound delay estimation
errors in ISP networks.

3.2 System Architecture
SDProber sends probe packets repeatedly to measure delays
in different parts of the network. The mirrored packets are
collected at the collector, to compute the expected delay per
link or path. This is used for creating a basis of comparison
to detect anomalous delays. The architecture of the system
is presented in Fig. 2. Next, we describe the different compo-
nents of SDProber.

Figure 2: System architecture.

3.2.1 Probe Agent. The probe agent is responsible for
crafting and dispatching probe packets, by activating probe
clients. The number of probe clients can vary. Currently, a
probe client is attached to every node. Alternatively, a small
number of probe clients can be used. Each probe packet will
be emitted from a probe client to the destined starting node
s1 and continue along the probing route. The TTL should be
set appropriately.
The probe packets are marked to distinguish them from

genuine traffic and to associate mirrored packets to their
probing task. Each probe has a unique ID, in its payload.

Figure 3: OpenFlow rules and group tables in SD-
Prober.

The collector groups mirrored packets by this ID and dis-
tinguishes groups of mirrored packets of different probes
from one another. This allows the collector to reconstruct
the path for each probe packet. Differently from probe pack-
ets, mirrored packets should not be mirrored (on their way
to the collector). In SDProber this is done by assigning a
unique destination MAC addresses to probe packets and a
unique destination MAC addresses to mirrored packets (the
MAC-address field was chosen arbitrarily, and any available
field can be used in lieu of it). To further restrict the traversal
of the probe packets, the probe client sets the time to live
(TTL) field in the packet header to a predefined limit.

3.2.2 SDN Controller and Open vSwitches. The underly-
ing elements of the network are Open vSwitches (OVS) with
an OpenFlow programming interface. Each OVS is identified
by a datapath ID (DPID) known to the SDN controller. For
adaptive measurements, SDProber routes probe packets in
a random walk fashion. To do so, it uses a combination of
group tables and match-action rules. OpenFlow’s group ta-
bles are designed to execute one or more buckets for a single
match, where each bucket consists of one or more actions.
Group tables can be operated in different modes: ALL, SE-
LECT, INDIRECT, and FAST FAILURE. SDProber uses group
tables in ALL and SELECT modes. Group tables in ALL mode
execute all the buckets, and group tables in SELECT mode
execute a selected bucket. The selection is based on field
values of the packet and weights that are given to the groups.
Note that the selection is uniform when weights are equal.
Fig. 3 illustrates how OpenFlow forwarding rules and

group tables handle probe packets. SDProber adds twomatch-
action forwarding rules, FR1 and FR2, to each OVS. The rules
forward probe packets to group tables or to the collector.
When a probe packet arrives at a switch, rule FR1 forwards
the probe packet to a group table in ALL mode, containing
two buckets.

First, a mirrored packet is created, with a destination MAC
address of a mirrored packet and a UDP source port equal to
the DPID of that switch. The mirrored packet is routed to the
collector. Second, the TTL of the probe packet is decremented
and the probe is forwarded to the group table that operates
in SELECT mode, where each bucket has a weight. For each



forwarded packet, the OVS chooses a bucket and executes the
actions in the bucket. Each bucket contains a forwarding rule
to a different neighbor node (a different port). The buckets are
selected arbitrarily, per a hash of field values, in proportion
to the weights.
OVS hashes several fields including MAC addresses, IP

addresses, VLAN ID, Ethernet type, protocol (UDP in probe
packets)—to choose a bucket in a group table. The hash values
are cached by the OVS, to uniformly select buckets per each
flow. Hence, to add randomness to the bucket selection, the
probe agent assigns a unique source MAC address to each
probe packet. Note, however, that in repeating visits of a
probe packet at a node, the same actions are applied at each
visit. Hence, the traversal is a pseudo random walk. A real
randomwalk can be implemented by applying rules that take
the TTL into account, but this would require adding more
rules to each node (it will multiply the number of rules by the
TTL limit), which is too expensive and unnecssary. When a
mirrored probe packet arrives at a switch, match-action rule
FR2 forwards the probe packet to the collector. This prevents
the unnecessary mirroring of already mirrored packets.

3.2.3 Collector. Mirrored probe packets reach the collec-
tor. The collector records the arrival time, extracts the UDP
source from the header and gets the unique identifier from
the payload. The mirrored packets are grouped by the iden-
tifier of the probe. If all the mirrored packets arrive at the
collector, then the number of groups is equal to the total
number of probe packets, and the number of packets in each
group is equal to the initial TTL limit. After grouping, the
collector computes the traversed path of each probe packet
by ordering the mirrored packets of each group based on
DPID values and the known network topology. The recorded
times of arrival of the ordered mirrored packets are used for
estimating the delay for each link on the path.
The collector stores the measured times and uses the

stored data to compute the mean and the variance of the
delay. By using reservoir sampling (see [18]), a random sam-
ple can be be used in lieu of the complete history, to reduce
the storage space.

4 MONITORING BY RANDOMWALK
SDProber needs to satisfy the min-rate and max-rate con-
straints when routing probe packets. Computing a set of
paths that satisfies all the constraints is computationally
expensive and not always possible. Instead, in SDProber
the probe packets perform a random walk (see [14]) over a
weighted graphs.

In the random walk, the initial node and each traversal
step are selected randomly, per probe. The link-selection
probabilities are proportional to the weights of forwarding
rules. The path length is limited by setting the TTL field to a

particular value, say 10 steps. It determines the number of
inspected links per probe packet, to reduce the rate at which
probe packets are crafted and dispatched. Increasing the TTL
also allows reducing the number of probe clients.

The initial node is selected randomly, possibly non-uniformly,
as follows. Let n be the number of nodes in the network G,
i.e., |V | = n, where each node vi ∈ V has a weight wi . Let
W =

∑n
i=1wi be the sum of weights. The probability of se-

lecting nodevi iswi/W . To implement this, in each selection
of a node, a number x in the range [0, 1) is picked uniformly.
The i such that

∑i−1
j=1w j

W ≤ x <
∑i
j=1w j

W is discovered, and vi is
the selected node.
When forwarding probe packets, the link (port) for the

next step is chosen proportionally to the weights assigned
to forwarding rules in the OpenFlow’s SELECT-mode group
tables. (See Section 3.2.)
To control the inspection rates, we need to estimate the

number of probes passing through each link for a given
number of emitted probes. This is done as follows. First, we
compute visit probabilities for nodes. Let P0 be a vector such
that P0[i] is the probability of selecting vi as the initial node,
for 1 ≤ i ≤ n. The transition matrix of G is an n × n matrix
M = (pi j )1≤i, j≤n , where pi j is the probability of forwarding
the probe packet from vi to vj . Note that for each node vi ,
the array (pi1, . . . ,pin) specifies the probabilities for the next
step after reaching vi . Thus, pi j = 0 if vi and vj are not
neighbors, and

∑n
j=1 pi j = 1, for all vi ∈ V .

Given the initial probabilities P0 and the transition matrix
M , P1 = (MT )P0 is the vector of probabilities of reaching each
node after one step of the random walk. By Pt = (MT )tP0
we denote the probability of reaching each node after t steps
of the random walk.
The probability of traversing a link (vi ,vj ) in a random

walk of k steps is the probability of reaching node vi in
step t and proceeding to node vj in step t + 1, for some
0 ≤ t < k . We denote this probability by p-traversei j . That
is, p-traversei j =

∑k−1
t=0 (Pt )i (pi j ), since (Pt )i is the probability

of reaching node vi at step t , and pi j is the probability of
forwarding to vj a packet that arrived at vi .

In the random walk approach, we do not need to conduct
complex computations to craft probe packets or change them
as they traverse the graph. If network changes require ad-
justments of probe rates, we merely have to alter the node
weights of the initial node selection or the weights in the
group tables.

5 WEIGHT ADAPTATION
In adaptive monitoring, weights that affect the random walk
are adjusted to aid satisfying the rate constraints. SDProber
modifies the weights iteratively using binary exponential



backoff. The iterations continue indefinitely, as long as the
monitoring continues.

Link-weight adaptation. The weights are adapted to
satisfy the probing constrains. Weights are doubled (halved)
when the probing rate is below (above) the minimum (maxi-
mum) rate. Adding (reducing) weight increases (decreases)
the probability of selecting the link in the next iteration.
Rates within the limits specified by the rate constraints

are adjusted after each iteration. The weight of a link with
a normal delay is decreased by half. The weight of each
uninspected link is multiplied—by α if it was delayed during
the last k iterations, and by 2, otherwise. The value k is
configurable. By that, historically delayed links could receive
a higher weight than links with no history of delays, to be
visited more frequently.

Node-weight adaptation. Node weights should be mod-
ified to reflect the changes in links. The weight of a node
with a link below the minimum rate is doubled, to increase
the chances of visiting this node in the next iteration. Other-
wise, the node weight is halved, to prevent traversal via links
whose min-rate constraint is already satisfied. The weight is
also halved for nodes with (1) a link whose probing rate is
already greater than max-rate and (2) no links whose rate is
less than min-rate.

6 BASELINE METHODS
Commonly, probe packets are sent via the shortest path
between two nodes [6, 23]. Hence, we compare SDProber
to two baseline methods in which each probe traverses the
shortest path between selected nodes. We present now the
baseline methods.

Random Pair Selection (RPS). In each iteration of RPS,
pairs of source and destination nodes are selected randomly.
The probe packets are sent via the shortest path from the
source to the destination. The probe packets are mirrored to
the collector at each hop, and the collector uses the arrival
times of packets to estimate the delay on links, as in SDProber.
In each iteration, the pair of source and destination nodes
is selected uniformly from the set of pairs that have not
been selected previously, till all the links are probed. This is
repeated for the duration of the monitoring.

Greedy Path Selection works in a greedy fashion, it-
eratively. Initially an empty set Visited is created. In each
iteration, for each pair of nodes, the weight of the shortest
path P between these nodes is

∑
e ∈P and e<Visited min-rate(e),

that is, the sum of the min rate values of all the unvisited
links on the path. The path with the maximal weight is se-
lected and its links are added to Visited. The probe packet is
sent from the source to the destination of the selected path.
The process ends when Visited contains all the links of the
network. This is repeated while the monitoring continues.

7 EVALUATION
To test SDProber, we conducted a series of experiments. The
goals are to show that (1) SDProber provides control over
the link probing rates, (2) SDProber satisfies the min-rate
constrains with a lower cost (in terms of the total number
of packets) than the baseline methods, without increasing
the delay deection time, and (3) given historical delay data,
α can be tuned to improve performances.

Setting. The tests were executed on Mininet [4] with
Open vSwitch 2.7.2 and a RYU controller [13]. We used a
publicly-available real topology (the largest one in Topology-
Zoo [8]), with 196 nodes and 243 links. A probing iteration
was launched every 30 seconds. After every iteration, the
weights of nodes and links were adjusted (see Section 3.2.2)
and the rules were updated (see Section 5).

We tested three probing profiles, in which min-rate, max-
rate and the the difference between them vary. The profiles
are (small, 16, 20), (medium, 8, 28) and (large, 20, 60), where
each tuple contains the name of the profile, min-rate andmax-
rate, respectively. Rates are in packet per minute (ppm). In
each profile, the specified rates were assigned to all the links.
In actual networks, the network operator can set probing
rates based on SLA, the frequency of delays, etc.

In the presented results, the TTL limit was 10. In additional
experiments, which are not presented here, we tested the
effect of the TTL on the results and saw that as we increase
the initial TTL, the detection time of delays decreases, but as
the TTL approaches 10, the decrease gets smaller, and beyond
10 it is negligible. This is due to the hashing implementation
by OVS, as discussed in Section 3.2.2.

7.1 Control over Inspection Rates
SDProber controls the number of probe packets through each
link by adjusting the link weights. The probability of a packet
to go through a link (p-traverse) is as described in Section 4.
An important question is whether the probabilistic model
is correlated with the actual traffic flow. To test this, we
measured the number of probe packets going via each link,
and compared the expected count with the measured one.
In this test, the total number of emitted probes per iteration
was equal to the sum of the min-rates over all the links. Each
measured number of packets is the average of five executions
and each execution is limited to ten iterations. Fig. 4 presents
the results for the three probing profiles. The gray line depicts
the expected values, which is the probability multiplied by
the number of probe packets and the TTL. The graphs show
that pseudo random walk provides inspection rates that are
close to the expected values. For all the profiles, the error
is within a range of around ±10% from the expected value.
Thus, the probabilistic model provides a reliable description
of the traffic flow. We conducted additional experiments,
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packets per linkwhen satisfying the
min-rate constraints.
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Figure 6: The number of surplus
probe packets per link when satisfy-
ing the min-rate constraints.

with other probing rates, and the results were the same. The
probabilities and their range depend on the topology and
the rate constraints. Also, a small number of packets per
iteration can lead to weight adjustments and an increase in
the probabilities.

7.2 Cost Effectiveness
A main advantage of SDProber over the baseline methods is
its ability to monitor the network with a low cost, in terms
of the overall number of emitted probe packets. The next
experiments show this. For each method, we increased the
number of emitted probe packets per iteration till satisfy-
ing all the min-rate constraints of the links. Emitting fewer
packets means that the constraints are satisfied with a lower
cost. The results are presented in Fig. 5. SDProber sends
fewer probe packets than Greedy and RPS, to satisfy the min-
rate constrains. A reduction by a factor of 4.48–11.77 and of
10.52–12.44 is achieved in comparison to Greedy and RPS,
respectively. The effectiveness of SDProber is achieved by
adapting the weights to avoid probing links whose min-rates
were already satisfied.

SDProber satisfies max-rate constraints more strictly than
Gready and RPS. To show this, Fig. 6 depicts the average
number of excess probe packets per link, i.e., packets that
cause the probing rate to exceed max-rate. SDProber sends
10.46–36.31 and 18.69–62.29 times fewer surplus packets than
Greedy and RPS, respectively.

7.3 Adjusting α
The parameter α provides control over the weight adaptation,
to inspect frequently-delayed links (FDL) at a higher rate
than other links. We tested the effect of α on a network with
10% delays, where f % are FDL, i.e., delays repeat for these
links in different iterations. We varied the α values from 2 to
4 with steps of 0.4 for the small probing profile and show its
influence on the detection time for f ∈ {0%, 50%, 100%} in

Fig. 7. The number of packets per iteration was small (200),
to emphasize the effect of frequent probing of FDL. Each
reported time is the average of five executions and each exe-
cution is limited to ten iterations. When there are FDL, i.e.,
f ∈ {50%, 100%}, increasing α reduces the detection time,
by 2.84% and 5.58% on an average. But the reduction in de-
tection time decreases with the increase in alpha because
other parameters (number of probe packets, f and rate con-
straints) influence the detection time as well. However, when
there are no FDL, i.e., f ∈ {0%}, decreasing α increases the
detection time by 3.91% on an average and α = 2 yields the
fastest detection time.

7.4 Detection Time
To test how fast delays are detected, we evaluated the time
it takes to detect all the delayed links. The percentage of
delayed links in different runs was varied from 10% to 100%,
at increments of 10% (in all cases, the entire network should
be inspected to detect all delays). In each experiment, the
number of packets available per iteration was equal to the
sum of min-rate values over all the links—this ensures that
there are enough packets per iteration to probe all the links
at min-rate. Fig. 8 presents the results for the medium prob-
ing profile. The results are similar for the other two probing
profiles. Each reported time is the average of five execu-
tions and iterations are continued till all the delayed links
have been detected. RPS detects delays slightly slower than
SDProber, but requires many more packets to satisfy the
min-rate constraints. RPS and SDProber detect delays about
twice faster than Greedy. SDProber conducted less than 3
complete iterations (weight updates) during this test.

The reason for the slow detection by Greedy is that links
with a low weight are visited last, and a delay on such a link
is detected behindhand. In SDProber, the weight adjustment
guarantees frequent probing of all the links, according to the
min-rates. Note that RPS ignores the weights, so regardless of
where the inspection rates are violated, the entire network is
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inspected, including links which have already been inspected.
So, detecting all the delays with RPS is relatively fast, but it
has a high cost.

8 WEIGHT ALLOCATION
SDProber can be configured to use differentweight-allocation
strategies, e.g, static or adaptive—we investigated the adap-
tive case. Previous studies [5, 11] have shown that link fail-
ures can be learned. Accordingly, a failure probability can
be associate with each link, to determine static weights for
the random walk (future work). However, in static weight
allocation, links with a low failure probability would be in-
spected at a very low rate—this reduces costs but may lead
to late detection of failures in links with a low weight.
As an example use case of dynamic weight allocation,

consider AT&T FlexWare—a Network Function on Demand
architecture. A customer could deploy dozens or hundreds of
virtual network functions (VNFs) on FlexWare devices, and
the network between them would be monitored by SDProber.
Based on full knowledge of the VNFs, the connections be-
tween VNFs will be monitored at rates that are specified by
the customer, to comply with the SLA. When a new service
is deployed, it can be accommodated by weight adaption,
easily and promptly. A similar approach can be applied to a
hybrid environment where only some of the nodes are OVS.

9 RELATEDWORK
Network measurements, including delay measurement, re-
ceived a lot of attention over the years [2, 9, 12]. How-
ever, these papers do not show how to use SDN capabili-
ties or centralized control for effective proactive measure-
ment of the delay. Recently, with the advent of SDN, there
is a growing interest in measurements that are adapted to
SDN [1, 3, 10, 16, 19, 20, 22].

Several systems utilize mirroring for measurements. Net-
Sight [7] uses mirroring to gather information about the
trajectories of all the packets in a network. However, their
method is only suitable for small networks, and does not
scale. Everflow [24] provides a scalable sampling of pack-
ets in datacenter networks. They, however, require specific
hardware, e.g., multiplexers, to support their sampling. Fur-
thermore, their method is reactive, to be used in a response
to an event, while SDProber is proactive, to monitor the
network in an economic way and detect high delays early.
Using probe packets to measure latencies in OpenFlow-

based networks was studied in [17, 21]. SLAM [21] uses the
time of arrival of OpenFlow packetin messages at the con-
troller to estimate the delay between links. However, this
approach requires knowledge of traffic patterns, e.g., to dis-
tinguish between lack of packetin messages and delays that
obstruct packetin messages, so it may not be applicable to
networks which are not a datacenter. The OpenNetMon [17]
system provides per-flow metrics, like throughput, delay and
packet loss, for OpenFlow networks. It uses probe packets
and a collector for delay measurement. Pingmesh [6] uses
ping to measure delays in a datacenter. Unlike SDProber,
OpenNetMon and Pingmesh do not provide an adaptive mea-
surement framework.

10 CONCLUSION
We presented SDProber—a prober for proactive measure-
ment of delays in SDN. SDProber provides control over the
inspection rates of links, by routing probe packets accord-
ing to min-rate and max-rate constraints, while utilizing
each probe packet to inspect several links. To satisfy the
constraints without expensive computations, the dispatched
probes conduct a random walk over a weighted graph. The
weights are modified using binary exponential backoff to
achieve the desired probing rate for each link. Furthermore,
weight adaptation can use the history of delays, to inspect
frequently-delayed links at a higher rate than other links.
We demonstrate how random walk is implemented us-

ing OpenFlow. In our evaluation, we show that SDProber
is more effective than baseline methods by sending signif-
icantly fewer probe packets without increasing the time it
takes to detect delays and while reducing the number of
excess packets through links.
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