
Stress Testing Traffic to Infer Its Legitimacy

Nick Duffield and Balachander Krishnamurthy
AT&T Labs–Research, 180 Park Avenue, Florham Park, New Jersey, 07932, USA

{duffield,bala}@research.att.com

Abstract
Adaptation in the face of performance degradation is
the hallmark of well-behaved network traffic. For suf-
ficiently robust applications, we propose distinguishing
good from bad traffic on the basis of the response to
artificial performance impairments. We explain the ba-
sic requirements for our scheme, and show how it could
be generically applied at different levels in the protocol
stack.

1 Introduction

This paper proposes a new measurement-based method-
ology for detecting badly behaving network entities. The
methodology can potentially be applied across a range of
protocol levels. The key idea is to stress test an entity by
impairing its network performance, and then to observe
the response of the entity to the impairment. Our work
is primarily oriented closer to the edge rather than the
middle of the network.

The usefulness of the method rests on two assump-
tions:

• Differentiation: The response to impairment is dif-
ferent for bad entities than good entities, and can
hence be used to classify entities as good or bad.

• Recovery: good entities can recover from impair-
ment in the sense that the performance degradation
they suffer remains within acceptable levels.

In practice, these two assumptions are coupled. Sup-
pose we impair the performance of a protocol that is used
by an application. We require the underlying protocol
to be more sensitive and responsive to impairment that
the application, i.e., it must adapt to the impairment be-
fore the application suffers an unacceptable performance
degradation. Impairment must be sufficiently short-lived
to be interpreted as a transient, forcing retry, leading to

recovery. The nature of this response is used to distin-
guish bad from good.

For some applications, e.g., online gaming and others
that are highly sensitive to loss and delay, no impairment
is tolerable. We assume that these applications can be
identified (e.g. on the basis of TCP/UDP port numbers)
and excluded from our scheme. More generally, the im-
pairments induced by stress testing must not cause per-
formance degradation to exceed acceptable limits, e.g.,
as specified in a Service Level Agreement (SLA).

2 Impairment and Responses

We now describe the broad characteristics of impair-
ments, propose some schemes for good/bad classifica-
tion, and discuss the costs of misclassification.

2.1 Impairment Characteristics

In many cases, applications will experience performance
impairments even in the absence of stress testing, for ex-
ample due to packet loss, delay, network rerouting or
resource contention at endpoints. We call these impair-
ments ambient. We assume that applications are well-
designed in the sense that they a reasonably good at
adapting to or otherwise withstanding ambient impair-
ments. If this assumption holds, then it makes sense for
impairments introduced by stress testing to conform as
closely as possible to the characteristics of the ambient
impairments. For then applications need only recover
from impairments of the type (even if not the intensity)
of those that they are known to adapt to. Another rea-
son for stress impairments from to conform to ambiance
is to make it harder for an adversarial bad application to
detect that it is being stress tested.

This begs the question of the extent to which ambient
impairments can be characterized and then reproduced
in stress testing. We will discuss this further for specific



applications in Section 3. Here we enumerate some gen-
eral parameters for impairment. In our model, the stress
testing takes the form of a sequence of individual stress
events, characterized by the following parameters:

• Frequency: of stress events during stress testing

• Event duration: the duration of an single stress
event

• Stress duration: the duration of a set of stress
events. Note that the stress duration may itself be
adaptive in the sense that stress testing is terminated
once sufficient information has been extracted from
responses for classification, or if it is decided that
no such classification can be made.

• Granularity: at which stress take place. For exam-
ple, a stress test might target all packets from an IP
address, or a subnet, or using a particular UDP/TCP
port.

How should these parameters be determined? The ag-
gressiveness of the stress test should be commensurate
with the perceived threat. The frequency of bad traffic
may be bootstrapped by learning directly from the iden-
tification scheme that is used in the stress test, although
their will be a transient period in which such estimates
are unreliable. One way to seed an initial the threat level
is to monitor the intensity of bad traffic taking place, e.g.,
attacks on “dark” address space as seen in a honeypot [9].
A generic scheme to set parameters for the stress test is
described in Section 2.3 below.

2.2 Impairment and Control
We use the following three outcome model to describe
the response of an entity to a stress event:

• Cease: the entity ceases all activity. This may be
due to a bad entity having turned its attention else-
where, or any entity suffering an unrecoverable er-
ror as a result of impairment. Whatever the reason,
the current stress test of the entity is terminated.

• Evolve to Good: adaptation to impairment in the
manner expected of a good entity. The current stress
test of the entity is terminated.

• Evolve to Bad: any other result, for example, not
responding to impairment in any manner. The en-
tity is flagged as “suspicious”. Stress testing may
continue.

How should the outcome of one or several stress
events be interpreted? The greater the number of stress
events, the greater the certainty of the classification based

upon the outcomes. This motivates a cautious approach
in which only multiple suspicious outcomes would result
in an entity being designated bad, in which case some
further action, e.g., blocking, is taken. This may be ac-
complished in a number of ways; here in one:

• Fixed horizon classification: a fixed number n of
stress events is generated in sequence. An entity is
classified as bad if the number of suspicious out-
comes exceeds some level m ≤ n. The history
of outcomes is discarded for each new stress test.
probes.

Impairment may also be used as means of control; in
this case the intensity of impairments (as determined by
frequency and/or duration of stress events) can be in-
creased in response to the level of suspicion. At the same
time, it is desirable not to penalize an entity unduly for
suspicious behavior far in the past. Thus one penalizes
bursts of suspicion, while admitting ambient low level of
false positives. This motivates:

• Queue-based classification: Suspicion flags are en-
queued in an infinite buffer which drains at some
rate. The impairment intensity is a function of the
buffer occupancy.

2.3 Costs of Impairment
We use the term cost to denote the potential undesirable
impact of the impairment method on applications. We
identify two types of cost:

• The impairment cost represents the performance
degradation experienced by good applications dur-
ing impairments, and during their response to im-
pairments. This cost includes, for example, the im-
pact of packet loss or delay due to impairment on an
application’s performance.

• The identification costs are those of actions taken
on the basis of the identification of applications as
good or bad. Examples of such costs include the the
false positive rate (the frequency with which good
applications are misidentified as bad) and the false
negative rate (the frequency with which bad appli-
cations are misidentified as good). Impairment may
be combined with other classification methods. In
this case, the relevant identification costs are those
of the composite classifier.

For a number of reasons, both impairment and identi-
fication costs may vary with time. As noted, a stress test
may adapt to the responses of the target, either to increase
the effectiveness of classification, or to control entities
classified as bad. Adaptation takes the form of changing



the intensity of the impairment, or possibly removing it
altogether. This results in a concomitant changes in the
false negative and positive rates.

3 Applications

We now examine the key set of protocols on a case by
case basis. The main issues are: the possible responses
as a result of impairment (apart from normal response
and no response), how the responses may be interpreted
at the client side, are they recoverable, and if so how
(where will the adaptation be seen if at all). Impairment
and monitoring has to take place at the same protocol
level to facilitate tracking of the reaction. Our guiding
principle is that our scheme becomes difficult to use at
a given protocol level if there are a variety of adaptation
mechanisms possible or used by traffic using that proto-
col that cannot be distinguished. Differentiation typically
requires moving to a higher layer.

Note that in some protocols/layers impairments al-
ready being used or subsumed by other mechanisms.
Where appropriate we mention them. For example, in
BGP the notion of impairment is not so crucial as the
peers exchanging routes and/or traffic have prearranged
thresholds.

3.1 UDP and its Applications

UDP does not provide any adaptation mechanisms in it-
self. However, higher level applications and protocols
may select UDP as their transport, but implement their
own adaptation to impairment. In some cases the adap-
tation to be evident at the transport layer, involving re-
duction of the sending rate (to avoid congestion) and the
repetition of packets (for reliability). The precise details
of the adaptation will depend on the higher level proto-
col or application in question. The UDP port number
can be useful in identifying the application. More subtle
adaptations may only be visible in the transport payload,
and again their location and interpretation would rely on
accurate identification of the application in question.

For a specific example, we consider the Realtime
Transport Protocol RTP [14] running over UDP. Within
RTP, The RTP control protocol (RTCP) provides feed-
back on the quality of data distribution. Under impair-
ment due to stress testing, receivers will notify senders
of reduced quality via RTCP. A good sender is expected
to modify its transmissions accordingly. However, the
nature may appear quite subtle at the network level , e.g.,
reducing the number of layers sent from a layered encod-
ing of audio or video. The precise nature of this adap-
tation is determined according to the policy of the end
application.

3.2 TCP and Other Congestion Avoiding
Transport Protocols

TCP is equipped with congestion avoidance mecha-
nisms: a well-behaved TCP adapts to congestion by de-
creasing its congestion window before growing it again
to explore the available bandwidth. The TCP sender de-
tects congestion when acknowledgements are not forth-
coming from the receiver, due to loss and/or delay of
packets in transit. Thus a TCP connection should both
adapt to impairment, and also recover from it. Stress test-
ing of TCP is accomplished by dropping and/or delaying
packets, and observing the connection’s response. Im-
pairment must not be so intense as to seriously degrade
throughput. A connection which either adapts either too
slowly, or not at all, is regarded as bad. Thus, depending
on the thresholds for classification. TCP sender that is
too aggressive may be regarded as bad.

We give more detail on how the framework might be
implemented for impairment by packet loss. We require
to be able to monitor and possibly impair both directions
of a TCP connection. One way to achieve this is to insert
the desired functionality below the TCP layer in a receiv-
ing host. Impairment is achieved by selectively dropping
packets incoming from a sender. Using the terminology
from Section 2, a normal TCP connection is expected to
“evolve to good” as it adapts to dropped packets.

A number of approaches to passively characterizing
TCP connections have been proposed; see [4, 5, 19]. One
aim of this work has is to compare measured character-
istics with theoretical baselines. Deviations from these
baselines would then be used as triggers for routers to
impose limits, e.g. by restricting the bandwidth avail-
able to a connection in order to restore a fair distribution
of bandwidth. Our aim is somewhat different: to iden-
tify and penalize bad connections in advance of their im-
pact on other traffic. [4] proposed three categories: flows
that are not TCP friendly, flows that use a disproportion-
ate amount of bandwidth, and flows that are unrespon-
sive to packet loss. The last case matches best with our
framework; [4] mentions the idea of introducing packet
loss impairments, and observing whether reduction in
throughput (if any) conforms to expectations.

A more detailed yardstick against which to measure
the sender’s response to impairment is an estimate of the
sender’s congestion window obtained by monitoring the
receiver-to-sender ACKs. This has been proposed in [5],
which uses the ACKs to drive transitions in a finite state
machine (FSM) that represents the sender. State transi-
tions due to sender timeouts may be inferred by moni-
toring sender-to-receiver retransmissions. Parallel FSMs
may be run for different flavors of TCP. Losses occur-
ring between the monitoring point and the sender lead
to estimation uncertainties, although the impact can be



detected and corrected for to some degree.
We outline how classification of bad senders might

proceed if using the congestion window estimation
scheme. A sender is flagged as suspicious if, it sends
a packet that would not be allowed by TCP under the
current estimate of the senders congestion window. The
sender is flagged as bad if it sends multiple suspicious
packets, e.g., as determined by one of the classification
schemes in Section 2.2. In principle, this classification
could be made of any connection, whether impaired or
not. The advantage of stress testing is that by active so-
liciting a response from the sender, it enables the identifi-
cation of bad senders in advance of circumstances where
their bad behavior may be problematic. In this example
stress testing helps identify overaggressive TCP senders
in times of low network congestion, rather than in con-
gestion periods in which they could have a dispropor-
tionate impact on other connections. This is somewhat
different to the approach of [4], which proposed charac-
terization of higher rate flows during periods of conges-
tion. Once a sender is classified as bad, some action may
be taken against it (e.g. dropping, blocking, or otherwise
deprioritizing) at the monitoring point, or by reconfigur-
ing routers in the traffic’s path.

We propose to evaluate this approach in future work.
Initial evaluations will use controlled TCP-like senders
that can be configured to act in good or bad fashion. The
existing active TCP inference tool tbit [13] can likely
be modified for this purpose.

Stress testing is intended for connections that are al-
ready established. On the other hand dropping packets at
the start of a connection, specifically the SYN and SYN-
ACK packets used in the three-way handshake that es-
tablishes the connection, should be used sparingly or not
at all, since the performance impact of preventing con-
nections establish altogether will be far greater.

Although the operational details may differ, a simi-
lar approach to stress testing can be adopted with other
congestion avoiding transport protocols, including the
Stream Control Transmission Protocol (SCTP) [16] and
the Datagram Congestion Control Protocol (DCCP) [7].

Although we have described an example in which
monitoring and impairment takes place at a connection
endpoint, the same could be accomplished in the mid-
dle of the network. (The methods of [5] were originally
designed for this context). Here, keeping track of the
identification status of potentially a huge number of con-
nections is a challenging. But since their are only limited
number of potential states in the classification schemes
of Section 2.2, one may use compression schemes such
as Bloom filters [1] in order to reduced the space needed.
For example, in the fixed horizon classification scheme
one may maintain a Bloom filter each number of suspi-
cious outcomes, and store keys of connections in it. The

current state is then yielded by the highest level Bloom
filter that declare a match on the connection key. How-
ever, Bloom filters are subject to false positives, which
increases the identification costs.

3.3 DNS
A disproportionate amount of DNS traffic consists of
UDP exchanges involving port 53; apart from zone
transfers there is very little TCP traffic. Traditionally
DNS clients are configured to send recursive queries
as their resolver libraries often do not follow refer-
rals. Local DNS servers can handle iterative referrals
that might come back from authoritative DNS servers.
One weakness with impairment in DNS is that many
clients may ask multiple name servers in parallel for non-
authoritative queries. Authoritative DNS servers how-
ever can impair requests by referring the request to non-
existent servers to see if the query comes back. Root
servers are ill equipped to participate given how busy
they are with the already large fraction of illegitimate,
albeit non-attack, queries [18] that they receive.

3.4 SMTP
The Simple Mail Transfer Protocol has reasonable poten-
tial for impairment trials. Although email has the reputa-
tion for being delivered instantaneously, the dependence
on this has significantly eroded due to the popularity of
instant messaging and the rise of email spam. A non-
trivial number of email messages are delayed for a va-
riety of reasons and the retry mechanism built into the
application (with retrials carried out over several days)
ensures that the mail will be eventually delivered.

Our assumption here is that spammers are not likely
to retry sending the mail as it would require human in-
tervention. Robots would have to be able to parse the re-
ply and separate simple bounce messages from vacation
programs and impairment triggered responses. However,
depending on the importance of the mail, the human
(non-spammer) sender may retransmit the mail. Each
such retransmission dramatically lowers the probabil-
ity of the sender being a spammer. Many sites main-
tain a whitelist (good senders), blacklist (bad senders),
and graylist (as yet unclassified senders). Retransmitters
could be moved from the graylist to the whitelist. The
related step of moving non-retransmitters to a blacklist is
however trickier as is the problem of dealing with mail-
ing lists.

A serendipitous benefit for users who have been se-
lected for impairment is that they faced a one-time de-
lay but future communications are likely to improve. A
spammer trying to subvert the mechanism would have to
retransmit a very large number of messages in trying to



game this mechanism with a low probability of guaran-
teed success.

3.5 HTTP
At the HTTP layer, redirection would involve a
3xx level response (redirection class response
code such as 307 Temporary Redirect but
to a blank page. Alternately the server could
send back a 408 Request Timeout or a
503 Service Unavailable along with a
Retry-After header indicating the number of
seconds after which the client should retry the request.
Here, this value should be as low as possible; say 1
second. The assumption again is that a user may retry
but an attack program is not likely to react the same way.
With the Web server under our control, it is possible to
monitor the frequency of access and retries as input to
further impairment actions. Interestingly, the expected
adaptation on the part of the user is to retry whereas in
TCP the expectation is the opposite: backing off.

We benefit due to the additional and more detailed se-
mantic information available at the Web server. For ex-
ample, it is possible to distinguish between normal user
requests, and those that emanate from spiders. Thus, a
Web server operating under impairment rules, can make
judicious choices of URLs whose access trigger impair-
ment guided by its access patterns and popularity.

3.6 P2P
Three broad categories of P2P protocols have emerged:
the original central index model of Napster, the flood-
ing of neighbors with separation of search and download
phases model exemplified by Gnutella and KaZaa, and
the most popular tracker process and segmented down-
loading model of BitTorrent. There are at least two
schools of thought: one that presumes virtually all the
content exchanged on P2P networks are of dubious le-
gality and the other that views that there is a steadily in-
creasing share of significant amounts of legal content be-
ing exchanged. For example, Linux Kernel releases are
now routinely copied via BitTorrent.

One impairment technique already prevalent is content
pollution: insertion of white noise in audio files or unex-
pected content in large video files, to frustrate the illegal
downloaders [10]. Another prevalent technique–that of
choking or throttling connections–is to reduce freeload-
ing and to look for other peers who might be able to share
wanted content faster. We consider the latter technique
here.

Elimination of freeriding that began in eMule and was
extended in BitTorrent revolves around the use of tit-
for-tat mechanisms by giving poor service to nodes that

do not dedicate enough of their bandwidth to uploading.
Here impairment is done by deliberately scheduling poor
sharers at the rear end of the queue. Another impair-
ment technique available in protocols like BitTorrent is
an early choke mechanism whereby nodes who are con-
stantly looking for better connected nodes can drop one
of the existing (poor) connections. While this is done
for a selfish purpose, it can address concerns about nodes
that may pretend to have poor connectivity. However, the
false positives will be detrimental to the choked node.

The absence of both local history (between a pair of
nodes) and global history (across nodes) leads to false
positives (well behaved nodes are mistakenly impaired)
and false negatives (nodes that don’t share enough re-
ceive good treatment). Similar to the TCP case where
we argued for trying impairments on long lasting con-
nections only, we believe such impairments should only
be tried when there is enough information about the other
nodes.

4 Relation to Existing Approaches

Variants to our proposed impairment notion have been
proposed both in the middle of the network and at the
edge in the past. In the TCP arena, the notion of penalty
box has been advanced, as a way of restricting band-
width usage by misbehaving flows [4]. At user-level ap-
plications such as Email it is possible to challenge email
senders with a simple puzzle to be solved in order to dis-
tinguish human senders from programs. It is important to
note a key distinction between proposals made in the past
and ours: the primary issue was fairness in the past with a
different quality of service offered to misbehaving flows
arising out of, presumably accidental, misconfigurations.
We are more interested in identifying malicious and de-
liberate senders of unwanted traffic. Once an email puz-
zle is solved the sender is permanently classified as good
by being added to a whitelist thus leading to potential
abuse by forging addresses of whitelist members.

Honeypots [9, 15], a resource whose value lies in its
unauthorized use, advertise unused address space and ex-
amine traffic that arrive there. Honeypots can help iden-
tify suspicious IP addresses [17]. Some honeypots listen
passively, while others actually interact with the traffic
by responding to connection set up attempts. At the other
extreme, there are honeypots that can emulate a kernel
keeping the attacker busy with fake responses. In the
past, tarpits [8] have been deployed to actually waste re-
sources of suspicious attack sources. However, the key
difference is that virtually all traffic arriving at the dark
address space is known to be unwanted. In the domain
of electronic mail, the MAPS [11] black list of abusers
of email allowed any system administrator to drop all
email coming from these domains. Again, the impair-



ment here is after the identification of the (potentially)
offensive source.

The throttling of connections suspected not to share
an equal fraction of their bandwidth for uploading in
P2P networks, is clearly a form of impairment. How-
ever, such tit-for-tat mechanisms is on a one-to-one basis
and is based on immediate recent history of transactions.
Such a mechanism requires evaluation of all of the node’s
neighbors. The impairment can be temporary as choked
connections can be unchoked later on a case-by-case ba-
sis. The granularity of impairment is at the connection
level rather than on packets. Even the semantic queu-
ing of suspected poor sharers by placing them towards
the tail end of the queue can lead to starvation of some
nodes indicating absence of fine-grained control.

5 Strengths and Limitations

In this section we discuss strengths and limitations of
stress testing: the need to control impairment cost, the
scope for countermeasures, and the trade-offs in using
application level semantics for identification.

5.1 Keeping Impairment Costs Acceptable
Impairment costs must not be so large as to make stress
testing unacceptable for good network users. Other ap-
proaches that have been proposed include doing limited
flooding of links that are suspected to be bearing attack
traffic [2] and the more recent proposal to attempt to gen-
erate challenges to suspected email senders [12]. In the
former case there is a risk of doing more damage than
warranted or beneficial while in the latter zombie ma-
chines generating email may get challenges. We focus
on keeping impairment within an SLA or similar limits.

The total impairment experienced by an entity has two
components: the ambient impairment and the impair-
ment due to stress testing. The total costs must be kept
within acceptable limits. This requires two things.

Firstly, the acceptable limit must be known. This
may be expressed in terms of SLAs between a service
provider and its customers, that governing the allow-
able performance degradation and penalties for devia-
tions therefrom. However such limits may need to be
applied conservatively, since customers are commonly
responsive to degradations beyond an “effective” SLA
corresponding to the level of service that they usually re-
ceive, which may be better than the worst degradation
allowed under the SLA.

Secondly, the level of ambient impairment must be
known. Depending on the application, this may be
known from application level statistics, e.g. as main-
tained by Web servers, or from network measurements.
In the latter case, one challenge is to characterize ambient

impairments at the same level of granularity as the stress
test itself. Although commonly reported loss statistics,
such as those reported via SNMP, are aggregated at the
link level, a more recent method, Trajectory Sampling
[3], allows the estimation of loss rate (and sometimes
packet delays) at the level of individual hosts and links.

5.2 Scope for Countermeasures
A strength of stress testing is that the scope for counter-
measures from a bed entity is limited. Firstly, the impair-
ments in a well-designed stress test are not distinguish-
able from ambient impairments, and thus it is difficult to
determine that stress testing is taking place. This likely
entails using a full spectrum of likely impairments (e.g.
including both loss and latency) in a suitably randomized
manner that leaves no signature. Secondly, the method
is potentially ubiquitous, making reverse blacklisting by
bad entities harder. Thirdly, response to impairment in
an aggressive manner makes it more likely that the entity
will be flagged as suspicious or even identified as bad.

5.3 Application Layer Semantics
In principle a detailed understanding of application se-
mantics may be used to construct detailed models of ex-
pected user behavior, and departures therefrom detected.
However, this approach becomes more problematic the
further up the protocol stack one goes. Applications may
be deployed in multiple hosts and in different variants;
thus it is necessary to either modify applications or write
appropriate dynamically linked libraries. At the network
layer, with the small number of transport protocols, it is
easier to implement impairments. The trade-off is that
with knowledge of application-specification semantics it
is easier to construct narrow and specific impairments to
identify potential attackers. For example, a Web server
could track access patterns on its site and selectively redi-
rect requests for rarely requested URLs when the number
of requests exceed a threshold or when they come from
BGP prefixes never seen before [6]. However, this re-
quires state maintenance about URL access patterns and
tuning when the site changes.

6 Impairment factors

Below we list various factors to be kept in mind while
considering impairment. They include where impair-
ment should be done, directionality of traffic, for how
long, and how meaningful thresholds on false positives
and false negatives can be generated.

Impairment is done most readily at the receiving net-
work’s ingress point or at the application host. It does
not involve any resources in the middle of the network.



Should impairment be done on incoming traffic only
or can we consider outgoing traffic too? Depending on
the application it may well make sense to impair out-
going traffic. For example, if there is a suspected virus
loose behind a network triggering large volumes of email
or outbound portscans, it might be reasonable to selec-
tively drop some transactions as a pre-throttling mea-
sure. An added benefit in dealing with outgoing traffic
is that there is a better prior history of patterns to make
informed and selective impairments.

Depending on the infrastructure being protected, the
cost of false negatives and false positives, the duration
and nature of impairment will vary within applications.
A DNS attack against a typical site is a lot less problem-
atic than against a CDN infrastructure which depends on
DNS for its entire service. In such instances, cost of a
false negative is high and it may pay to be more aggres-
sive. Thus, where there is a potential of amplification of
attacks, frequency of impairment attempts can go up.

In some cases, the parameters of the stress test can
be set based on a cost analysis related to that in [20].
Suppose that the false positive f+ and false negative f

−

rate for identification are known and a function of test
parameters φ. This knowledge can come from anal-
ysis of a model of the test, or from empirical obser-
vations, or both. Suppose a proportion p of the total
traffic is believed to be bad traffic. p may be a cur-
rent estimate based in the stress testing itself, or as de-
termined by independent measurements. Then the pa-
rameters φ are chosen so as to minimize the total cost
C(φ) = pf

−
(φ) + (1 − p)f+(φ). Note that the test pa-

rameters automatically adapt to changes in the measured
or expected value of p.

7 Summary

We have outlined a new technique, impairment via stress
testing, to distinguish good and bad traffic. The tech-
nique is low cost, tailored to different applicable layers,
and thresholdable to ensure no service level agreements
are violated. The natural concerns of false positives and
negatives are discussed via tunable parameters governing
the stress causing events. The technique is more natural
at the transport layer than others although we can take ad-
vantage of the broader leeway available in SMTP, HTTP,
and P2P applications. A key advantage of stress tests is
that attackers cannot easily detect them and will likely
become more visible by trying to counter the measure.

Acknowledgments

We would like to thank the anonymous referees for their
useful feedback and pointers to earlier related work.

References
[1] BRODER, A., AND MITZENMACHER, M. Network applications

of bloom filters: A survey. In Proc. Allerton Conference (Monti-
cello, IL, October 2002).

[2] BURCH, H., AND CHESWICK, B. Tracing anonymous packets
to their approximate source. In Proceedings of Usenix LISA con-
ference (2000).

[3] DUFFIELD, N., AND GROSSGLAUSER, M. Trajectory sampling
for direct traffic observation. IEEE/ACM Transactions on Net-
working 9, 3 (June 2001), 280–292.

[4] FLOYD, S., AND FALL, K. Promoting the use of end-to-end
congestion control in the internet. IEEE/ACM Transactions on
Networking (August 1999).

[5] JAISWAL, S., IANNACCONE, G., DIOT, C., KUROSE, J., AND
TOWSLEY, D. Inferring tcp connection characteristics through
passive measurements. In Proceedings of IEEE INFOCOM
(March 2004).

[6] JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M. Flash
Crowds and Denial of Service Attacks: Characterization and Im-
plications for CDNs and Web Sites. In WWW (MAY 2002).

[7] KOHLER, E., HANDLEY, M., AND FLOYD, S. Datagram Con-
gestion Control Protocol (DCCP). Internet Draft, March 2005.

[8] Hackbusters - Homepage. http://hackbusters.net.

[9] LANCE SPITZNER. Honeypots: Definitions and Value of Honey-
pots. http://www.tracking-hackers.com/
papers/honeypots.html.

[10] LIANG, J., KUMAR, R., XI, Y., AND ROSS, K. Pollution in p2p
file sharing systems. In IEEE Infocom (2005).

[11] The maps realtime blackhole list.
http://mail-abuse.org/rbl/.

[12] NELSON, M. Fairuce, March 2005.
http://www.alphaworks.ibm.com/tech/fairuce.

[13] PADHYE, J., AND FLOYD, S. On Inferring TCP Behavior. In
ACM SIGCOMM (2001), pp. 287–298.

[14] SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JA-
COBSON, V. RTP: A Transport Protocol for Real-Time Appli-
cations. RFC 3550, July 2003.

[15] SHAHEEM MOTLEKAR. Honeypots: Frequently Asked Ques-
tions.
http://www.tracking-hackers.com/misc/faq.html.

[16] STEWART, R., XIE, Q., MORNEAULT, K., SHARP, C.,
SCHWARZBAUER, H., TAYLOR, T., RYTINA, I., KALLA, M.,
ZHANG, L., AND PAXSON, V. Stream control transmission pro-
tocol. RFC 2960, October 2000.

[17] VINOD YEGNESWARAN AND PAUL BARFORD AND SOMESH
JHA. Global Intrusion Detection in the DOMINO Over-
lay System. In Proceedings of ISOC 2004 (February 2004).
http://www.cs.uwisc.edu/˜barford/isoc04.ps.

[18] WESSELS, D., AND FOMENKOV, M. Wow, that’s a lot of pack-
ets. In Proceedings of Active and Passive Measurement Workshop
(April 2003). http://moat.nlanr.net/PAM2003/
PAM2003papers/3836.pdf.

[19] ZHANG, Y., BRESLAU, L., PAXSON, V., AND SHENKER, S.
The characteristics and origins of internet flow rates. In ACM
Sigcomm (August 2002).

[20] ZOU, C., DUFFIELD, N., TOWSLEY, D., AND GONG, W. Adap-
tive defense against various network attacks. SRUTI 2005 Work-
shop (Steps to Reducing Unwanted Traffic on the Internet), Cam-
bridge, MA, July, 2005.


